Installer’s Guide

Upflow/Downflow/Horizontal Gas-Fired, 1–Stage and 2–Stage Induced Draft Furnaces with High Efficiency Motor

Upflow, Downflow, Horizontal Right/Left

Single Stage
- S8X1A026M2PSAA
- S8X1A040M3PSAA
- S8X1B040M2PSAA
- S8X1B060M3PSAA
- S8X1B060M4PSAA
- S8X1B080M4PSAA
- S8X1C080M5PSAA
- S8X1D120M5PSAA

Two Stage
- S8X2A040M3PSAA
- S8X2B060M3PSAA
- S8X2B060M4PSAA
- S8X2B080M4PSAA
- S8X2C080M5PSAA
- S8X2C100M5PSAA
- S8X2D120M5PSAA

Note: This installer’s Guide is used for multiple furnace families. Models may have a “T” in the 12th digit designating they meet California less than 40 ng/J (NOx) emissions requirements.

Note: Graphics in this document are for representation only. Actual model may differ in appearance.

SAFETY WARNING

Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment.

January 2019
Ingersoll Rand has a policy of continuous product and product data improvement and it reserves the right to change design and specifications without notice.

Important: This document pack contains a wiring diagram and service information. This is customer property and is to remain with this unit. Please return to service information pack upon completion of work.

⚠️ **WARNING**

FIRE OR EXPLOSION HAZARD!

Failure to follow safety warnings exactly could result in a fire or explosion causing property damage, personal injury or loss of life.

<table>
<thead>
<tr>
<th>— Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance. — WHAT TO DO IF YOU SMELL GAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Do not try to light any appliance.</td>
</tr>
<tr>
<td>• Do not touch any electrical switch; do not use any phone in your building.</td>
</tr>
<tr>
<td>• Immediately call your gas supplier from a neighbor’s phone. Follow the gas supplier’s instructions.</td>
</tr>
<tr>
<td>• If you cannot reach your gas supplier, call the fire department.</td>
</tr>
<tr>
<td>— Installation and service must be performed by a qualified installer, service agency, or the gas supplier.</td>
</tr>
</tbody>
</table>

⚠️ **WARNING**

EXPLOSION HAZARD!

Failure to follow this Warning could result in property damage, personal injury or death. Install a gas detecting warning device in case of a gas leak. **NOTE:** The manufacturer of your furnace does not test any detectors and makes no representations regarding any brand or type of detector.

⚠️ **WARNING**

FIRE OR EXPLOSION HAZARD!

Failure to follow the safety warnings exactly could result in serious injury, death, or property damage.

Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury, or loss of life.

⚠️ **WARNING**

ELECTRICAL SHOCK, FIRE, OR EXPLOSION HAZARD!

Failure to follow this Warning could result in dangerous operation, property damage, severe personal injury, or death.

Improper servicing could result in dangerous operation, property damage, severe personal injury, or death.

| • Before servicing, disconnect all electrical power to furnace. |
| • When servicing controls, label all wires prior to disconnection. Reconnect wires correctly. |
| • Verify proper operation after servicing. |

⚠️ **WARNING**

CARBON MONOXIDE POISONING HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

To ensure furnace is vented properly, do not replace factory supplied venting components with field fabricated parts. Fabricating parts can result in damaged vents and components allowing carbon monoxide to escape the venting system.

⚠️ **WARNING**

CARBON MONOXIDE HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

When replacing a furnace, ensure the venting system is adequate for the new furnace.
WARNING

FIRE HAZARD!
Failure to follow this Warning could result in property damage, severe personal injury, or death.
Do not install the furnace directly on carpeting, tile or other combustible material other than wood flooring. For vertical downflow applications, subbase (BAYBASE205) must be used between the furnace and combustible flooring. When the downflow furnace is installed vertically with a cased coil, a subbase is not required.

WARNING

EXPLOSION HAZARD!
Failure to follow this Warning could result in property damage, severe personal injury, or death.
Propane gas is heavier than air and may collect in any low areas or confined spaces. In addition, odorant fade may make the gas undetectable except with a warning device. If the gas furnace is installed in a basement, an excavated area or a confined space, it is strongly recommended to contact a gas supplier to install a gas detecting warning device in case of leak. The manufacturer of your furnace does not test any detectors and makes no representations regarding any brand or type of detector.

WARNING

ELECTRICAL SHOCK HAZARD!
Failure to follow this Warning could result in property damage, severe personal injury, or death.
Do not bypass the door switch or panel loop by any permanent means.

WARNING

ELECTRICAL SHOCK HAZARD!
Failure to follow this Warning could result in property damage, severe personal injury, or death.
Do not touch any components other than the Menu and Option buttons on the IFC when setting up the system or during fault code recovery.

WARNING

FIRE OR EXPLOSION HAZARD!
Failure to follow this Warning could result in property damage, severe personal injury, or death.
Do NOT attempt to manually light the furnace.

WARNING

CARBON MONOXIDE POISONING HAZARD!
Failure to follow this Warning could result in property damage, severe personal injury, or death.
Follow the service and/or periodic maintenance instructions for the Furnace and venting system.

WARNING

CARBON MONOXIDE POISONING HAZARD!
Failure to follow this Warning could result in serious personal injury or death.
Make sure that the blower door is in place and not ajar. Dangerous fumes could escape an improperly secured door.

WARNING

ELECTRICAL SHOCK HAZARD!
Failure to follow this Warning could result in property damage, severe personal injury, or death.
Disconnect power to the unit before removing the blower door. Allow a minimum of 10 seconds for IFC power supply to discharge to 0 volts.

WARNING

SAFETY HAZARD!
Failure to follow this Warning could result in property damage, severe personal injury, or death.
These furnaces are not approved or intended for installation in manufactured (mobile) housing, trailers, or recreational vehicles.
WARNING

EXPLOSION HAZARD!
Failure to follow this Warning could result in property damage, severe personal injury, or death.
In the event that electrical, fuel, or mechanical failures occur, shut gas supply off at the manual gas valve located on the supply gas piping coming into the furnace before turning off the electrical power to the furnace. Contact the service agency designated by your dealer.

WARNING

EXPLOSION HAZARD!
Failure to follow this Warning could result in property damage, serious personal injury, or death.
Do not store combustible materials, gasoline, or other flammable vapors or liquids near the unit.

WARNING

SAFETY HAZARD!
Failure to follow this Warning could result in property damage, severe personal injury, or death.
Do not use semi-rigid metallic gas connectors (flexible gas lines) within the furnace cabinet.

WARNING

INSTALLATION WARNING — HIGH VOLTAGE MOVING PARTS!
Failure to follow this Warning could result in property damage, severe personal injury, or death.
Bodily injury can result from high voltage electrical components, fast moving fans, and combustible gas. For protection from these inherent hazards during installation and servicing, the main gas valve must be turned off and the electrical supply must be disconnected. If operating checks must be performed with the unit operating, it is the technician’s responsibility to recognize these hazards and proceed safely.

WARNING

SAFETY HAZARD!
Failure to follow this Warning could result in property damage, severe personal injury, or death.
Do not install the filter in the return duct directly above the furnace in horizontal applications. Install the filter remotely.

WARNING

SAFETY HAZARD!
Failure to follow this Warning could result in property damage, severe personal injury, or death.
Turn the power to the furnace off before servicing filters to avoid contact with moving parts.

WARNING

CARBON MONOXIDE HAZARD!
Failure to follow this Warning could result in property damage, severe personal injury, or death.
Furnace venting into an unlined masonry chimney or concrete chimney is prohibited.

WARNING

CARBON MONOXIDE HAZARD!
Failure to follow this Warning could result in property damage, severe personal injury, or death.
The chimney liner must be thoroughly inspected to insure no cracks or other potential areas for flue gas leaks are present in the liner. Liner leaks will result in early deterioration of the chimney.

WARNING

SHOCK HAZARD!
Failure to follow this Warning could result in property damage, severe personal injury, or death.
If a disconnect switch is present, it must always be locked in the open position before servicing the unit.

WARNING

OVERHEATING AND EXPLOSION HAZARD!
Failure to follow this Warning could result in property damage, personal injury or death.
Should overheating occur, or the gas supply fail to shut off, shut off the gas valve to the unit before shutting off the electrical supply.

CAUTION

IMPROPER VOLTAGE CONNECTION!
Failure to follow this Caution could result in property damage.
Do NOT connect the furnace line voltage to a GFCI protected circuit.
CAUTION

CORROSION WARNING!
Failure to follow this Caution could result in property damage or personal injury. Do not install the furnace in a corrosive or contaminated atmosphere.

SHARP EDGE HAZARD!
Failure to follow this Caution could result in property damage or personal injury. Be careful of sharp edges on equipment or any cuts made on sheet metal while installing or servicing.

BACKUP WRENCH REQUIRED!
Failure to follow this Caution could result in property damage or personal injury. Use a backup wrench on the gas valve when installing gas piping to prevent damage to the gas valve and manifold assembly.

FREEZE CAUTION!
Failure to follow this Caution could result in property damage or personal injury. If complete furnace shutdown is done during the cold weather months, provisions must be taken to prevent freeze-up of all water pipes and water receptacles.

FREEZE CAUTION!
Failure to follow this Caution could result in property damage or personal injury. Whenever your house is to be vacant, arrange to have someone inspect your house for proper temperature. This is very important during freezing weather. If for any reason your furnace should fail to operate damage could result, such as frozen water pipes.

IGNITION FUNCTION!
Failure to follow this Caution may result in poor ignition characteristics. Maintain manifold pressure in high altitude installations.

WATER DAMAGE!
Failure to follow this Caution could result in property damage or personal injury. It is recommended that an external overflow drain pan be installed in all applications over a finished ceiling to prevent property damage or personal injury from leaking condensate.

HOT SURFACE!
Failure to follow this Caution could result in personal injury. Do NOT touch igniter. It is extremely hot.

FURNACE SERVICE CAUTION!
Failure to follow this Caution could result in property damage or personal injury. Label all wires prior to disconnection when servicing controls. Verify proper operation after servicing. Wiring errors can cause improper and dangerous operation.

DO NOT USE AS CONSTRUCTION HEATER!
Failure to follow this Caution could result in property damage or personal injury. In order to prevent shortening its service life, the Furnace should NOT be used as a “Construction Heater” during the finishing phases of construction until the requirements listed in the furnace installation guidelines of the Installer’s Guide have been met. Condensate in the presence of chlorides and fluorides from paint, varnish, stains, adhesives, cleaning compounds, and cement create a corrosive condition which may cause rapid deterioration of the heat exchanger.

WIRING INFORMATION!
Failure to follow this Caution could result in property damage or personal injury. The integrated furnace control is polarity sensitive. The hot leg of the 120 VAC power must be connected to the BLACK field lead.
CAUTION

EQUIPMENT DAMAGE!

UV light exposure can cause the plastic blower material to deteriorate which could lead to Blower Housing Damage.

For units containing a plastic Blower Housing, Do NOT install third party Ultra-Violet Air Cleaners where the Blower Housing can be exposed to UV light.

WARNING

CARBON MONOXIDE POISONING HAZARD!

Failure to follow the steps outlined below for each appliance connected to the venting system being placed into operation could result in carbon monoxide poisoning or death.

The following steps shall be followed for each appliance connected to the venting system being placed into operation, while all other appliances connected to the venting system are not in operation:

- Inspect the venting system for proper size and horizontal pitch as required in the National Fuel Gas Code, ANSI Z223.1/NFPA 54 and these instructions. Determine there is no blockage or restriction, leakage, corrosion or other deficiencies which could cause an unsafe condition.
- Close all doors and windows between the space in which the appliance(s) connected to the venting system are located. Also close fireplace dampers.
- Turn on clothes dryers and any appliance not connected to the venting system. Turn on any exhaust fans such as range hoods so they are operating at maximum speed. Do not operate a summer exhaust fan.
- Follow the lighting instructions. Place the appliance being inspected into operation. Adjust the thermostat so appliance is operating continuously.
- Test for spillage from draft hood equipped appliances at the draft hood relief opening after 5 minutes of main burner operation. Use the flame of a match or candle.
- If improper venting is observed during any of the above tests, the venting system must be corrected in accordance with the National Fuel Gas Code, ANSI Z221.1/NFPA 54.
- After it has been determined that each appliance connected to the venting system properly vents when tested, return all doors, windows, exhaust fans, etc. to their previous condition of use.

For more information, visit www.IRCO.com or contact your installing dealer.

Ingersoll Rand
800 Beatty St.
Davidson, NC 28036
Table of Contents

Accessories .. 8
Document Pack Contents 8

Furnace Installation Guidelines 9
Safety Practices and Precautions 9
General Guidelines 9
Locations and Clearances 10

Outline Drawings 12

Furnace General Installation 16
 S-Series Furnace Panel Removal 16
 Gas Piping ... 17
 Combustion and Input Check 20
 Gas Valve Adjustment 21
 High Altitude Derate 22
 General Venting 23
 Air for Combustion and Ventilation 25
 Duct Connections 28
 Return Air Filters 38
 Electrical Connections 40

Field Wiring ... 40
Twinning ... 41

General Start-up and Adjustment 45
 Preliminary Inspections 45
 Lighting Instructions 45
 Control and Safety Switch Adjustment 45

Furnace Combustion Air Exhaust Options 46
 Combustion Air Conversions 49

Integrated Furnace Control Menu 53

Setting Airflow .. 58

Integrated Furnace Control Display Codes 59
 Fault Code Recovery 60

Sequence of Operation S8X1/S8X2 61
Accessories

Table 1. Accessories

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Description</th>
<th>Use with</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYHANG</td>
<td>Horizontal Hanging Kit</td>
<td>All Furnaces</td>
</tr>
<tr>
<td>BAYLIFTB</td>
<td>Dual Return Kit (B size extension)</td>
<td>B Cabinet Furnaces</td>
</tr>
<tr>
<td>BAYLIFTC</td>
<td>Dual Return Kit (C size extension)</td>
<td>C Cabinet Furnaces</td>
</tr>
<tr>
<td>BAYLIFTD</td>
<td>Dual Return Kit (D size extension)</td>
<td>D Cabinet Furnaces</td>
</tr>
<tr>
<td>BAYBASE205</td>
<td>Downflow Subbase</td>
<td>All Furnaces in Downflow orientation</td>
</tr>
<tr>
<td>BAYFLTR206</td>
<td>Filter Access Door Kit (Downflow only)</td>
<td>All Furnaces in Downflow orientation</td>
</tr>
<tr>
<td>BAYSF1165AA</td>
<td>1" SlimFit Box with MERV 4 Filter</td>
<td>All Furnaces</td>
</tr>
<tr>
<td>BAYFLTR203</td>
<td>Horizontal Filter Kit</td>
<td>B Cabinet Furnaces in Downflow/Horizontal</td>
</tr>
<tr>
<td>BAYFLTR204</td>
<td>Horizontal Filter Kit</td>
<td>C Cabinet Furnaces in Downflow/Horizontal</td>
</tr>
<tr>
<td>BAYFLTR205</td>
<td>Horizontal Filter Kit</td>
<td>D Cabinet Furnaces in Downflow/Horizontal</td>
</tr>
<tr>
<td>BAYVENT600A</td>
<td>Internal venting kit</td>
<td>B, C, and D Furnaces in Downflow orientation</td>
</tr>
<tr>
<td>BAYVENT800B</td>
<td>Masonry Chimney Vent Kit</td>
<td>All furnaces</td>
</tr>
<tr>
<td>BAYSWT13AHALTA</td>
<td>High Altitude Pressure Switch Kit</td>
<td>S8X1A026M2PSAA</td>
</tr>
<tr>
<td>BAYSWT14AHALTA</td>
<td>High Altitude Pressure Switch Kit</td>
<td>S8X1A040M3PSAA, S8X1B040M2PSAA, S8X1C080M5PSAA, S8X1C100M5PSAA</td>
</tr>
<tr>
<td>BAYSWT15AHALTA</td>
<td>High Altitude Pressure Switch Kit</td>
<td>S8X1B060M3PSAA, S8X1B060M4PSAA, S8X1B080M4PSAA</td>
</tr>
<tr>
<td>BAYSWT16AHALTA</td>
<td>High Altitude Pressure Switch Kit</td>
<td>S8X2A040M3PSAA, S8X2C080M5PSAA</td>
</tr>
<tr>
<td>BAYSWT17AHALTA</td>
<td>High Altitude Pressure Switch Kit</td>
<td>S8X2B060M3PSAA, S8X2B060M4PSAA</td>
</tr>
<tr>
<td>BAYSWT18AHALTA</td>
<td>High Altitude Pressure Switch Kit</td>
<td>S8X2B080M4PSAA</td>
</tr>
<tr>
<td>BAYSWT19AHALTA</td>
<td>High Altitude Pressure Switch Kit</td>
<td>S8X2C100M5PSAA</td>
</tr>
<tr>
<td>BAYLPSS400B</td>
<td>Propane Conversion Kit with Stainless Steel Burners</td>
<td>All Furnaces except S8X1A026</td>
</tr>
<tr>
<td>BAYLPSS410A</td>
<td>Propane Conversion Kit with Stainless Steel Burners</td>
<td>S8X1A026 Furnace only</td>
</tr>
<tr>
<td>PIP02095</td>
<td>U fitting for gas piping</td>
<td>All Furnaces for right hand gas entry</td>
</tr>
</tbody>
</table>

(a) Airflow greater than 1600 CFM requires dual returns

Document Pack Contents

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Plug — Gas</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Installer’s Guide</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Service Facts</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Owner Guide</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Limited Warranty</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Tinnerman Clips</td>
</tr>
</tbody>
</table>

Note: Tinnerman Clips should be kept with unit and are used if the door panel flange hole(s) becomes stripped.
Furnace Installation Guidelines

The following sections give general guidelines for the installation of the gas furnaces.

Safety Practices and Precautions

The following safety practices and precautions must be followed during the installation, servicing, and operation of this Furnace.

1. Use only with the type gas approved for this Furnace. Refer to the Furnace rating plate.
2. Install the Furnace only in a location and position as specified in “Locations and Clearances” of these instructions.
3. Provide adequate combustion and ventilation air to the Furnace space as specified in “Air for Combustion and Ventilation” of these instructions.
4. Combustion products must be discharged outdoors. Connect this Furnace to an approved vent system only, as specified in the “Venting” section of these instructions.
5. Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections, as specified in the “Gas Piping” section of these instructions.
6. Always install the Furnace to operate within the Furnace’s intended temperature-rise range with a duct system which has an external static pressure within the allowable range, as specified on the unit rating plate. Airflow within temperature rise for cfm versus static is shown in the Service Facts accompanying this Furnace.
7. When a Furnace is installed so that the supply ducts carry air circulated by the Furnace to areas outside the space containing the Furnace, the return air shall also be handled by a duct(s) sealed to the Furnace casing and terminating outside the space containing the Furnace.
8. A gas-fired Furnace for installation in a residential garage must be installed as specified in “Location and Clearances” section of these instructions.
9. The furnace may be used for temporary heating of buildings or structures under construction only when the following conditions have been met:
 a. The Furnace venting system must be complete and installed per manufacturer’s instructions.
 b. The Furnace is controlled only by a room Comfort Control (no field jumpers).
 c. The Furnace return air duct must be complete and sealed to the Furnace.
 d. The Furnace input rate and temperature rise must be verified to be within the nameplate marking.
 e. A minimum 4” MERV 11 air filter must be in place.
 f. 100% of the Furnace combustion air requirement must come from outside the structure.
 g. The Furnace return air temperature range is between 55 and 80 Fahrenheit.
 h. Clean the Furnace, duct work, and components upon substantial completion of the construction process, and verify Furnace operating conditions including ignition, input rate, temperature rise, and venting, according to the manufacturer’s instructions.
10. In the Commonwealth of Massachusetts, this product must be gas piped by a Licensed Plumber or Gas Fitter.

This Furnace is certified to leak 1% or less of nominal air conditioning CFM delivered when pressurized to .5” water column with all inlets, outlets, and drains sealed.

General Guidelines

The manufacturer assumes no responsibility for equipment installed in violation of any code or regulation.

It is recommended that Manual J of the Air Conditioning Contractors Association (ACCA) or A.R.I. 230 be followed in estimating heating requirements. When estimating heating requirements for installation at Altitudes above 2000 ft., remember the gas input must be reduced. See Combustion and Input Check.

Material in this shipment has been inspected at the factory and released to the transportation agency without known damage. Inspect exterior of carton for evidence of rough handling in shipment. Unpack carefully after moving equipment to approximate location. If damage to contents is found, report the damage immediately to the delivering agency.

Codes and local utility requirements governing the installation of gas fired equipment, wiring, plumbing, and flue connections must be adhered to. In the absence of local codes, the installation must conform to the latest edition of the National Fuel Gas Code ANSI Z223.1 / NFPA 54. The latest code may be obtained from the American Gas Association Laboratories, 400 N. Capitol St. NW, Washington D.C. 20001. 1-800-699-9277 or www.aga.org.

These furnaces have been classified as Fan Assisted Combustion system CATEGORY I furnaces as required by ANSI Z21.47 "latest edition". Therefore they do not require any special provisions for venting other than what is indicated in these instructions.
Locations and Clearances

The location of the Furnace is normally selected by the architect, the builder, or the installer. However, before the Furnace is moved into place, be sure to consider the following requirements:

1. Is the location selected as near the chimney or vent and as centralized for heat distribution as practical?
2. Do all clearances between the Furnace and enclosure equal or exceed the minimums stated in Clearance Table below?

Minimum clearance to combustible materials

<table>
<thead>
<tr>
<th>INSTALLATION CLEARANCE TO COMBUSTIBLE CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>THIS FURNACE IS APPROVED FOR UPFLOW, DOWNFLOW AND HORIZONTAL APPLICATIONS</td>
</tr>
<tr>
<td>FOR HORIZONTAL APPLICATIONS</td>
</tr>
<tr>
<td>+14.5" CABINETS, 1" SIDES AND 2" TOP</td>
</tr>
<tr>
<td>+17.5" CABINETS, 1" SIDES AND 2" TOP</td>
</tr>
<tr>
<td>+21.0" CABINETS, 1" SIDES AND 3" TOP</td>
</tr>
<tr>
<td>+24.5" CABINETS, 1" SIDES AND 5" TOP</td>
</tr>
<tr>
<td>NOTES:</td>
</tr>
<tr>
<td>1: MUST FOLLOW NATIONAL FUEL & GAS CODES FOR INSTALLS</td>
</tr>
<tr>
<td>2: TYPE B-I VENT CLEARANCE IS 1"</td>
</tr>
<tr>
<td>3: MUST USE SPECIAL BASE (BAYBASE205) WHEN INSTALLING IN DOWNFLOW ORIENTATION ON COMBUSTIBLE FLOOR</td>
</tr>
<tr>
<td>LINE CONTACT ONLY PERMISSIBLE BETWEEN LINES FORMED BY INTERSECTIONS OF THE TOP AND TWO SIDES OF THE FURNACE JACKET, AND BUILDING JOISTS, STUDS OR FRAMING</td>
</tr>
</tbody>
</table>

3. Is there sufficient space for servicing the Furnace and other equipment? A minimum of 24 inches front accessibility to the Furnace must be provided. Any access door or panel must permit removal of the largest component.
4. Are there at least 3 inches of clearance between the Furnace combustion air openings in the front panel and any closed panel or door provided?
5. Are the ventilation and combustion air openings large enough and will they remain unobstructed? If outside air is used, are the openings set 12" above the highest snow accumulation level?
6. Allow sufficient height in supply plenum above the Furnace to provide for cooling coil installation, if the cooling coil is not installed at the time of this Furnace installation.
7. The Furnace shall be installed so electrical components are protected from water.
8. If the Furnace is installed in a garage, it must be installed so that the burners, and the ignition source are located not less than 18 inches above the floor and the Furnace must be located or protected to avoid physical damage from vehicles.
9. The gas furnace must not be located where excessive exposure to contaminated combustion air will result in safety and performance related problems. Avoid the following known contaminants:
 a. Permanent wave solutions
 b. Chlorinated waxes and cleaners
 c. Chlorine based swimming pool chemicals
 d. Water softening chemicals
 e. De-icing salts or chemicals
 f. Carbon tetrachloride
g. Halogen type refrigerants
h. Cleaning solvents (such as perchloroethylene)
i. Printing inks, paint removers, varnishes, etc.
j. Hydrochloric acid

k. Cements and glues
l. Antistatic fabric softeners for clothes dryers
m. Masonry acid washing materials
Outline Drawings

S8X2 shown

Table 2. 14.5" Width Cabinet
Table 4. 21.0” Width Cabinet
Furnace General Installation

The following sections give general instructions for the installation of the gas furnaces.

Note: For the S8X2 furnace, a 5/16” Allen wrench is required to remove the four latches on the front panel.

Note: For the S8X1 furnace, a 1/4” nut driver is required to remove the two screws at the top of the front panel. The front panel can then be removed by lifting upwards.

Note: Tinnerman clips are provided in the doc pack if the door panel flange hole(s) becomes stripped.

S-Series Furnace Panel Removal
Gas Piping

Important: The furnace default is left side gas piping.

Note: For ease of installation, optional accessory part PIP02095 is recommended for gas piping entering the right side of the furnace.

<table>
<thead>
<tr>
<th>Furnace in upflow orientation with gas piping on left</th>
<th>Furnace in upflow orientation with gas piping on right</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: For ease of installation, optional accessory part PIP02095 is recommended for gas piping entering the right side of the furnace in the upflow orientation.

<table>
<thead>
<tr>
<th>Furnace in downflow orientation with gas piping on left</th>
<th>Furnace in downflow orientation with gas piping on right</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: For ease of installation, optional accessory part PIP02095 is recommended for gas piping entering the left side of the furnace in the downflow orientation.
Furnace General Installation

<table>
<thead>
<tr>
<th>Orientation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal left orientation with gas piping out top</td>
<td>For ease of installation, optional accessory part PIP02095 is recommended for gas piping entering the right side of the furnace.</td>
</tr>
<tr>
<td>Horizontal left orientation with gas piping out bottom</td>
<td>For ease of installation, optional accessory part PIP02095 is recommended for gas piping entering the top of the furnace in the horizontal left position.</td>
</tr>
<tr>
<td>Horizontal right orientation with gas piping out top</td>
<td>For ease of installation, optional accessory part PIP02095 is recommended for gas piping entering the bottom of the furnace in the horizontal right position.</td>
</tr>
<tr>
<td>Horizontal right orientation with gas piping out bottom</td>
<td>For ease of installation, optional accessory part PIP02095 is recommended for gas piping entering the bottom of the furnace in the horizontal right position.</td>
</tr>
</tbody>
</table>

Diagram:

- **Automatic Gas Valve with Manual Shut-off**
- **Main Manual Shut-off Valve**
- **Ground Union Joint**
- **Drip Leg**
- **1/8" NPT Test Fitting**

Legend:

- 1/8" NPT Test Fitting
- Main Manual Shut-off Valve
- Ground Union Joint
- Drip Leg
- Automatic Gas Valve with Manual Shut-off
The furnace is shipped standard for left side installation of gas piping. A cutout with plug is provided on the right side for an alternate gas piping arrangement.

The installation of piping shall be in accordance with piping codes and the regulations of the local gas company. Pipe joint compound must be resistant to the chemical reaction with liquefied petroleum gases.

Important: If local codes allow the use of flexible gas appliance connector, always use a new listed connector. Do not use a connector which has previously serviced another gas appliance.

Refer to the piping table for delivery sizes. Connect gas supply to the unit, using a ground joint union and a manual shut-off valve. National codes require a condensation drip leg to be installed ahead of the gas valve.

The furnace and its individual shut-off valve must be disconnected from the gas supply piping system during any pressure testing of that system at test pressures in excess of 1/2 psig (3.5 kPa).

The furnace must be isolated from the gas supply piping by closing its individual manual shut-off valve during any pressure testing of the gas supply piping system at test pressures equal to or less than 1/2 psig (3.5 kPa).

Note: Maximum pressure to the gas valve for natural gas is 13.8” W.C. Minimum pressure is 5.0” W.C. Maximum pressure to the gas valve for propane is 13.8” W.C. Minimum pressure is 11.0” W.C.

All gas fittings must be checked for leaks using a soapy solution before lighting the furnace. **DO NOT CHECK WITH AN OPEN FLAME!**

For propane conversions, the S8X1A026 will require LP kit BAYLPSS410A conversion kit with stainless steel burners. For propane conversions on all other S-Series Furnaces, use BAYLPSS400B conversion kit with stainless steel burners.

Table of Cubic Feet per Hour of Gas for Various Pipe Sizes and Lengths

<table>
<thead>
<tr>
<th>PIPE SIZE</th>
<th>LENGTH OF PIPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>131 90 72 62 55 50 46</td>
</tr>
<tr>
<td>3/4</td>
<td>273 188 151 129 114 104 95</td>
</tr>
<tr>
<td>1</td>
<td>514 353 284 243 215 195 179</td>
</tr>
<tr>
<td>1-1/4</td>
<td>1060 726 583 499 442 400 368</td>
</tr>
</tbody>
</table>

This table is based on Pressure Drop of 0.3 inch W.C. and 0.6 SP Gr. Gas

Orifice Sizes

<table>
<thead>
<tr>
<th>INPUT RATING BTUH</th>
<th>NUMBER OF BURNERS</th>
<th>MAIN BURNER ORIFICE DRILL SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NAT. GAS</td>
</tr>
<tr>
<td>26,000</td>
<td>2</td>
<td>51</td>
</tr>
<tr>
<td>40,000</td>
<td>2</td>
<td>45</td>
</tr>
<tr>
<td>60,000</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>80,000</td>
<td>4</td>
<td>45</td>
</tr>
<tr>
<td>100,000</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>120,000</td>
<td>6</td>
<td>45</td>
</tr>
</tbody>
</table>
Combustion and Input Check

1. Make sure all gas appliances are off except the furnace.
2. Clock the gas meter with the furnace operating (determine the dial rating of the meter) for one revolution.
3. Match the "Sec" column in the gas flow table with the time clocked.
4. Read the "Flow" column opposite the number of seconds clocked.
5. Use the following factors if necessary:
 a. For 1 Cu. Ft. Dial Gas Flow CFH = Chart Flow Reading ÷ 2
 b. For 1/2 Cu Ft. Dial Gas Flow CFH = Chart Flow Reading ÷ 4
 c. For 5 Cu. Ft. Dial Gas Flow CFH = 10X Chart Flow Reading ÷ 4
6. Multiply the final figure by the heating value of the gas obtained from the utility company and compare to the nameplate rating. This must not exceed the nameplate rating.

<table>
<thead>
<tr>
<th>Sec.</th>
<th>Flow</th>
<th>Sec.</th>
<th>Flow</th>
<th>Sec.</th>
<th>Flow</th>
<th>Sec.</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>732</td>
<td>31</td>
<td>236</td>
<td>52</td>
<td>141</td>
<td>86</td>
<td>85</td>
</tr>
<tr>
<td>11</td>
<td>666</td>
<td>32</td>
<td>229</td>
<td>53</td>
<td>138</td>
<td>88</td>
<td>83</td>
</tr>
<tr>
<td>12</td>
<td>610</td>
<td>33</td>
<td>222</td>
<td>54</td>
<td>136</td>
<td>90</td>
<td>81</td>
</tr>
<tr>
<td>13</td>
<td>563</td>
<td>34</td>
<td>215</td>
<td>55</td>
<td>133</td>
<td>94</td>
<td>78</td>
</tr>
<tr>
<td>14</td>
<td>523</td>
<td>35</td>
<td>209</td>
<td>56</td>
<td>131</td>
<td>98</td>
<td>75</td>
</tr>
<tr>
<td>15</td>
<td>488</td>
<td>36</td>
<td>203</td>
<td>57</td>
<td>128</td>
<td>100</td>
<td>73</td>
</tr>
<tr>
<td>16</td>
<td>458</td>
<td>37</td>
<td>198</td>
<td>58</td>
<td>126</td>
<td>104</td>
<td>70</td>
</tr>
<tr>
<td>17</td>
<td>431</td>
<td>38</td>
<td>193</td>
<td>59</td>
<td>124</td>
<td>108</td>
<td>68</td>
</tr>
<tr>
<td>18</td>
<td>407</td>
<td>39</td>
<td>188</td>
<td>60</td>
<td>122</td>
<td>112</td>
<td>65</td>
</tr>
<tr>
<td>19</td>
<td>385</td>
<td>40</td>
<td>183</td>
<td>62</td>
<td>118</td>
<td>116</td>
<td>63</td>
</tr>
<tr>
<td>20</td>
<td>366</td>
<td>41</td>
<td>179</td>
<td>64</td>
<td>114</td>
<td>120</td>
<td>61</td>
</tr>
<tr>
<td>21</td>
<td>349</td>
<td>42</td>
<td>174</td>
<td>66</td>
<td>111</td>
<td>130</td>
<td>56</td>
</tr>
<tr>
<td>22</td>
<td>333</td>
<td>43</td>
<td>170</td>
<td>68</td>
<td>108</td>
<td>140</td>
<td>52</td>
</tr>
<tr>
<td>23</td>
<td>318</td>
<td>44</td>
<td>166</td>
<td>70</td>
<td>105</td>
<td>150</td>
<td>49</td>
</tr>
<tr>
<td>24</td>
<td>305</td>
<td>45</td>
<td>163</td>
<td>72</td>
<td>102</td>
<td>160</td>
<td>46</td>
</tr>
<tr>
<td>25</td>
<td>293</td>
<td>46</td>
<td>159</td>
<td>74</td>
<td>99</td>
<td>170</td>
<td>43</td>
</tr>
<tr>
<td>26</td>
<td>282</td>
<td>47</td>
<td>156</td>
<td>76</td>
<td>96</td>
<td>180</td>
<td>41</td>
</tr>
<tr>
<td>27</td>
<td>271</td>
<td>48</td>
<td>153</td>
<td>78</td>
<td>94</td>
<td>190</td>
<td>39</td>
</tr>
<tr>
<td>28</td>
<td>262</td>
<td>49</td>
<td>149</td>
<td>80</td>
<td>92</td>
<td>200</td>
<td>37</td>
</tr>
<tr>
<td>29</td>
<td>253</td>
<td>50</td>
<td>146</td>
<td>82</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>244</td>
<td>51</td>
<td>144</td>
<td>84</td>
<td>87</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gas Valve Adjustment

Changes can be made by adjusting the manifold pressure, or changing orifices (orifice change may not always be required). To adjust the manifold pressure:

1. Turn off all electrical power to the system.
2. Attach a manifold pressure gauge with flexible tubing to the outlet pressure boss marked "OUT P" on White-Rodgers gas valve model 36J.
3. Loosen (Do Not remove) the pressure tap test set screw one turn with 3/32" hex wrench.
 a. The pressure tap adjustment kit (KIT07611) contains a 3/32" hex wrench, a 5/16" hose and a connector and can be ordered through Global Parts.
4. Turn on system power and make a call for 2nd stage heating. Insure that the unit is in second stage heating by verifying 24 VAC is measured between C and HI on the gas valve.

Important: Adjust 2nd stage on the gas valve before attempting to adjust 1st stage.

5. Adjust 2nd stage gas heat by removing the high (HI) adjustment regulator cover screw.
 a. To increase outlet pressure, turn the regulator adjust screw clockwise.
 b. To decrease outlet pressure, turn the regulator adjust screw counterclockwise.
 c. Adjust regulator until pressure shown on manometer matches the pressure specified in the table.
 The input of no more than nameplate rating and no less than 93% of the nameplate rating, unless the unit is derated for high altitude.
 d. Replace and tighten the regulator cover screw securely.
 e. Remove call for second stage heat, first stage heat is now running.
6. Adjust 1st stage gas heat by removing the low (LO) adjustment regulator cover screw.
 a. To increase outlet pressure, turn the regulator adjust screw clockwise.
 b. To decrease outlet pressure, turn the regulator adjust screw counterclockwise.
 c. Adjust regulator until pressure shown on manometer matches the pressure specified in the table.
 The input of no more than nameplate rating and no less than 93% of the nameplate rating, unless the unit is derated for high altitude.
 d. Replace and tighten the regulator cover screw securely.

7. Cycle the valve several times to verify regulator setting.
 a. Repeat steps 5-7 if needed.
8. Turn off all electrical power to the system.
9. Remove the manometer and flexible tubing and tighten the pressure tap screw.
10. Using a leak detection solution or soap suds, check for leaks at the pressure outlet boss and pressure tap test screw.
11. Turn on system power and check operation of the unit.

Maximum and Minimum INLET Pressure (inches w.c.)

<table>
<thead>
<tr>
<th></th>
<th>Natural Gas</th>
<th>Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>13.8</td>
<td>13.8</td>
</tr>
<tr>
<td>Minimum</td>
<td>5</td>
<td>11</td>
</tr>
</tbody>
</table>

Maximum and Minimum Fuel Manifold Pressure Settings (inches w. c.) 2nd Stg/1st Stg

<table>
<thead>
<tr>
<th></th>
<th>Natural Gas</th>
<th>Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>All models except S8X1D120, S8X2D120</td>
<td>3.5/1.6</td>
<td>10/6</td>
</tr>
<tr>
<td>S8X1D120, S8X2D120</td>
<td>3.5/1.8</td>
<td>10/7.5</td>
</tr>
</tbody>
</table>

Orifice sizes for Natural Gas and Propane

<table>
<thead>
<tr>
<th></th>
<th>Natural Gas</th>
<th>Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>All models except S8X1A026</td>
<td>45</td>
<td>56</td>
</tr>
<tr>
<td>S8X1A026</td>
<td>51</td>
<td>59</td>
</tr>
</tbody>
</table>

![Diagram of Gas Valve and Pressure Connections](image_url)
High Altitude Derate

Input ratings (BTUH) of these Furnaces are based on sea level operation and should not be changed at elevations up to 2,000 ft. (610 m).

If the installation is 2,000 ft. (610 m) or above, the Furnace input rate (BTUH) shall be reduced 4% for each 1,000 ft. above sea level.

Installations of this furnace at altitudes above 2,000 ft. (610 m) shall be made utilizing the Part Numbers for Replacement Orifices table in these installation instructions.

The Furnace input rate shall be checked by clocking the gas flow rate (CFH) and multiplying by the heating value obtained from the local utility supplier for the gas being delivered at the installed altitude. Input rate changes can be made by adjusting the Manifold Pressure (min 3.0 - max 3.7 in. W.C. - Natural Gas) or changing orifices (orifice change may not always be required).

If the desired input rate can not be achieved with a change in Manifold Pressure, then the orifices must be changed. Propane installations will require an orifice change.

See the table for help in selecting orifices if orifice change is required. Furnace input rate and temperature rise should be checked again after changing orifices to confirm the proper rate for the altitude.

Turn the main Gas Valve toggle switch within the unit to the "OFF" position. Turn the external gas valve to "ON". Purge the air from the gas lines. After purging, check all gas connections for leaks with a soapy solution – **DO NOT CHECK WITH AN OPEN FLAME.** Allow 5 minutes for any gas that might have escaped to dissipate.

Propane Gas being heavier than air may require forced ventilation. Turn the toggle switch on the Gas Valve in the unit to the "ON" position.

<table>
<thead>
<tr>
<th>Orifice Twist Drill Size If Installed at Sea Level</th>
<th>Altitude Above Sea Level and Orifice Required at Other Elevations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>3000</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>45</td>
<td>46</td>
</tr>
<tr>
<td>46</td>
<td>47</td>
</tr>
<tr>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>57</td>
<td>58</td>
</tr>
<tr>
<td>58</td>
<td>59</td>
</tr>
</tbody>
</table>

Note: For furnaces requiring modifications other than only gas orifice and/or manifold pressure adjustment for installation at high altitude, installation of this furnace at altitudes above 200 ft (610 m) shall be made in accordance with the listed High Altitude Conversion Kit available with this furnace.

The table lists the main burner orifices used with the furnace. If a change of orifices is required to correct the furnace input rating refer to the part number for replacement orifices table.

Installation of this furnace at altitudes above 2000 ft (610m) shall be in accordance with local codes, or in the absence of local codes, the National Fuel Gas Code, ANSI Z223.1/NFPA 54.
General Venting

VENT PIPING

These furnaces have been classified as Fan-Assisted Combustion System, Category I furnaces under the "latest edition" provisions of ANSI Z21.47 standards. Category I furnaces operate with a non-positive vent static pressure and with a flue loss of not less than 17 percent.

Multistory and common venting are permitted for these furnaces. Venting systems shall be in accordance with the National Fuel Gas Code, ANSI Z223.1/NFPA 54, local codes, and this installation manual.

If desired, a side wall termination can be accomplished through the use of a listed "add-on" draft inducer. The inducer must be installed according to the inducer manufacturer's instructions. Set the barometric pressure relief to achieve –0.02 inch water column.

The furnace shall be connected to a factory built chimney or vent complying with a recognized standard, or a masonry or concrete chimney lined with a liner material acceptable to the authority having jurisdiction.

VENTING INTO A MASONRY CHIMNEY

If the chimney is oversized, the liner is inadequate, or flue-gas condensation is a problem in your area, consider using the chimney as a pathway or chase for type "B" vent or flexible vent liner. If flexible liner material is used, size the vent using the "B" vent tables, then reduce the maximum capacity by 20% (multiply 0.80 times the maximum capacity). Masonry Chimney Kit BAYVENT800B may be used with these furnaces (Upflow model furnaces only) to allow venting into a masonry chimney. Refer to the BAYVENT800B Installer’s Guide for application requirements.

INTERNAL MASONRY CHIMNEYS

Venting of fan assisted appliances into a lined, internal masonry chimney is allowed only if it is common vented with at least one natural draft appliance; OR, if the chimney is lined with type "B", double wall vent or suitable flexible liner material

The following section does not apply if BAYVENT800B (Masonry Chimney Vent Kit) is used. All instructions with the kit must be followed.

<table>
<thead>
<tr>
<th>Masonry Chimney Venting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type Furnace</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Single Fan Assist</td>
</tr>
<tr>
<td>Fan Assist + Fan Assist</td>
</tr>
<tr>
<td>Fan Assist + Natural</td>
</tr>
</tbody>
</table>

(a) Flexible chimney liner size is determined by using the type "B" vent size for the available BTUH input, then reducing the maximum capacity by 20% (multiply maximum capacity times 0.80). The minimum capacity is the same as shown in the "B" vent tables.
EXTERNAL MASONRY CHIMNEY

Venting of fan assisted appliances into external chimneys (one or more walls exposed to outdoor temperatures), requires the chimney be lined with type “B”, double wall vent or suitable flexible chimney liner material. This applies in all combinations of common venting as well as for fan assisted appliances vented alone.

The following installation practices are recommended to minimize corrosion caused by condensation of flue products in the furnace and flue gas system.

1. Avoid an excessive number of bends.
2. Horizontal runs should pitch upward at least 1/4” per foot.
3. Horizontal runs should be as short as possible.
4. All vent pipe or connectors should be securely supported and must be inserted into, but not beyond the inside wall at the chimney vent.
5. When vent connections must pass through walls or partitions of combustible material, a thimble must be used and installed according to local codes.
6. Vent pipe through the roof should be extended to a height determined by National Fuel Gas Code or local codes. It should be capped properly to prevent rain water from entering the vent. Roof exit should be waterproofed.
7. Use type “B” double wall vent when vent pipe is routed through cool spaces (below 60° F.).
8. Where long periods of airflow are desired for comfort, use long fan cycles instead of continuous airflow.
9. Apply other good venting practices as stated in the venting section of the National Fuel Gas Code ANSI Z223.1 “latest edition”.
10. Vent connectors serving appliance vented by natural draft or non-positive pressure shall not be connected into any portion of a mechanized draft system operating under positive pressure.
11. Horizontal pipe runs must be supported by hangers, straps or other suitable material in intervals at a minimum of every 3 feet of pipe.
12. A furnace shall not be connected to a chimney or flue serving a separate appliance designed to burn solid fuel.
13. The flow area of the largest section of vertical vent or chimney shall not exceed 7 times the smallest listed appliance categorized vent area, flue collar area, or draft hood outlet area unless designed in accordance with approved engineering methods.

Maximum Vent or Tile Lined Chimney Flow Area = \[\pi \left(\frac{D^*}{2}\right)^2 \times \frac{4}{7}\]

*Drafthood outlet diameter, flue collar diameter, or listed appliance categorized vent diameter.

Gas Vent Termination

<table>
<thead>
<tr>
<th>Roof Pitch</th>
<th>Minimum Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat to 6/12</td>
<td>1.0 Feet (a)</td>
</tr>
<tr>
<td>Over 6/12 to 7/12</td>
<td>1.25 Feet</td>
</tr>
<tr>
<td>Over 7/12 to 8/12</td>
<td>1.5 Feet</td>
</tr>
<tr>
<td>Over 8/12 to 9/12</td>
<td>2.0 Feet</td>
</tr>
<tr>
<td>Over 9/12 to 10/12</td>
<td>2.5 Feet</td>
</tr>
<tr>
<td>Over 10/12 to 11/12</td>
<td>3.25 Feet</td>
</tr>
<tr>
<td>Over 11/12 to 12/12</td>
<td>4.0 Feet</td>
</tr>
<tr>
<td>Over 12/12 to 14/12</td>
<td>5.0 Feet</td>
</tr>
<tr>
<td>Over 14/12 to 16/12</td>
<td>6.0 Feet</td>
</tr>
<tr>
<td>Over 16/12 to 18/12</td>
<td>7.0 Feet</td>
</tr>
<tr>
<td>Over 18/12 to 20/12</td>
<td>7.5 Feet</td>
</tr>
<tr>
<td>Over 20/12 to 22/12</td>
<td>8.0 Feet</td>
</tr>
</tbody>
</table>

(a) This requirement covers most installations
Air for Combustion and Ventilation

Adequate flow of combustion and ventilating air must not be obstructed from reaching the Furnace. Air openings provided in the Furnace casing must be kept free of obstructions which restrict the flow of air. Airflow restrictions affect the efficiency and safe operation of the Furnace. Keep this in mind should you choose to remodel or change the area which contains your Furnace. Furnaces must have a free flow of air for proper performance.

Provisions for combustion and ventilation air shall be made in accordance with "latest edition" of Section 9.3, Air for Combustion and Ventilation, of the National Fuel Gas Code, ANSI Z223.1 / NFPA 54. Installation Codes, and applicable provisions of the local building codes. Special conditions created by mechanical exhausting of air and fireplaces must be considered to avoid unsatisfactory Furnace operation.

Furnace location may be in an unconfined space or a confined space.

Unconfined space are installations with 50 cu. ft. or more per 1000 BTU/hr input from all equipment installed. Unconfined spaces are defined in the table and illustration for various furnace sizes. These spaces may have adequate air by infiltration to provide air for combustion, ventilation, and dilution of flue gases. Buildings with tight construction (for example, weather stripping, heavily insulated, caulked, vapor barrier, etc.), may need additional air provided as described for confined space.

<table>
<thead>
<tr>
<th>Furnace Maximum BTUH Input Rating</th>
<th>With 8 Ft. Ceiling, Minimum Area in Square Feet of Unconfined Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>26,000</td>
<td>165</td>
</tr>
<tr>
<td>40,000</td>
<td>250</td>
</tr>
<tr>
<td>60,000</td>
<td>375</td>
</tr>
<tr>
<td>80,000</td>
<td>500</td>
</tr>
<tr>
<td>100,000</td>
<td>625</td>
</tr>
<tr>
<td>120,000</td>
<td>750</td>
</tr>
</tbody>
</table>
Confined spaces are installations with less than 50 cu. ft. of space per 1000 BTU/hr input from all equipment installed. Confined spaces are defined in the table and illustration for various furnace sizes. Air for combustion and ventilation requirements can be supplied from inside the building.

1. The following types of installations will **require** use of OUTDOOR AIR for combustion, due to chemical exposures:
 - Commercial buildings
 - Buildings with indoor pools
 - Furnaces installed in commercial laundry rooms
 - Furnaces installed in hobby or craft rooms
 - Furnaces installed near chemical storage areas

Exposure to the following substances in the combustion air supply will also require OUTDOOR AIR for combustion:

- Permanent wave solutions
- Chlorinated waxes and cleaners
- Chlorine based swimming pool chemicals
- Water softening chemicals
- Deicing salts or chemicals
- Carbon Tetrachloride
- Halogen type refrigerants
- Cleaning solvents (such as perchloroethylene)
- Printing inks, paint removers, varnish, etc.
- Hydrochloric acid
- Cements and glues
- Antistatic fabric softeners for clothes dryers
- Masonry acid washing material

Note: Extended warranties are not available in some instances. Extended warranty does not cover repairs to equipment installed in establishments with corrosive atmospheres, including but not limited to, dry cleaners, beauty shops, and printing facilities.

All air from inside the building. The confined space shall be provided with two permanent openings communicating directly with an additional room(s) of sufficient volume so that the combined volume of all spaces meets the criteria for an unconfined space. The total input of all gas utilization equipment installed in the combined space shall be considered in making this determination. Refer to the Minimum Free Area in square inches for confined spaces table, for minimum open areas required.
All air from outdoors. The confined space shall be provided with two permanent openings, one commencing within 12 inches of the top and one commencing within 12 inches of the bottom of the enclosure. The openings shall communicate directly, or by ducts, with the outdoors or spaces (crawl or attic) that freely communicate with the outdoors. Refer to the Minimum Free Area in square inches for confined spaces table, for minimum open areas required.
Duct Connections

Air duct systems should be installed in accordance with standards for air conditioning systems, National Fire Protection Association Pamphlet No. 90. They should be sized in accordance with ACCA Manual D or whichever is applicable. Check on controls to make certain they are correct for the electrical supply.

Central furnaces, when used in connection with cooling units, shall be installed in parallel or on the upstream side of the cooling units to avoid condensation in the heating element, unless the furnace has been specifically approved for downstream installation. With a parallel flow arrangement, the dampers or other means used to control flow of air shall be adequate to prevent chilled air from entering the furnace, and if manually operated, must be equipped with means to prevent operation of either unit unless the damper is in full heat or cool position.

Flexible connections of nonflammable material may be used for return air and discharge connections to reduce the transmission of vibration. Though these units have been specifically designed for quiet, vibration free operation, air ducts can act as sounding boards and could, if poorly installed, amplify the slightest vibration to the annoyance level.

When the furnace is located in a utility room adjacent to the living area, the system should be carefully designed with returns which minimize noise transmission through the return air grille. Although these winter air conditioners are designed with large blowers operating at moderate speeds, any blower moving a high volume of air will produce audible noise which could be objectionable when the unit is located very close to a living area. It is often advisable to route the return air ducts under the floor or through the attic. Such design permits the installation of air return remote from the living area (i.e. central hall).

When the furnace is installed so that the supply ducts carry air circulated by the furnace to areas outside the space containing the furnace, the return air shall also be handled by a duct(s) sealed to the furnace and terminating outside the space containing the furnace. For furnaces not equipped with a cooling coil, it is recommended that the outlet duct be provided with a removable access panel. The opening shall be accessible when the furnace is installed and shall be of such a size that the heat exchanger can be viewed for possible openings using light assistance or a probe can be inserted for sampling the air stream. The removable cover must be sealed to prevent air leaks.

Where there is no complete return duct system, the return connection must be run full size from the Furnace to a location outside the utility room, basement, attic, or crawl space. Do Not install return air through the back of the Furnace cabinet. Do Not install return air through the side of the furnace cabinet on horizontal applications without following the guidelines in the Return Air Filters section in the figure for Horizontal furnace with side return.

Carbon monoxide, fire or smoke can cause serious bodily injury, death, and/or property damage. A variety of potential sources of carbon monoxide can be found in a building or dwelling such as gas-fired clothes dryers, gas cooking stoves, water heaters, furnaces and fireplaces. The U.S. Consumer Product Safety Commission recommends that users of gas-burning appliances install carbon monoxide detectors as well as fire and smoke detectors per the manufactures installation instructions to help alert dwelling occupants of the presence of fire, smoke or unsafe levels of carbon monoxide. These devices should be listed by Underwriters Laboratories, Inc. Standards for Single and Multiple Station Carbon Monoxide Alarms, UL 2034.

Note: The manufacturer of your Furnace DOES NOT test any detectors and makes no representations regarding any brand or type of detector.

Note: Seal per local codes

In horizontal applications, the furnace must be supported with one of the following methods.

1. Support below with non-combustible material as shown in the illustration.
2. Use BAYHANG kit. See kit instructions.
3. Use unistrut with cabling to provide support from under the unit.
4. Use strapping material in locations shown in illustration.
<table>
<thead>
<tr>
<th>Upflow Furnace with Coil</th>
<th>Furnace in Horizontal Left with Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bend furnace flanges up.</td>
<td>1. Bend furnace flanges up.</td>
</tr>
<tr>
<td>2. Set the coil on top of the furnace.</td>
<td>2. Support the furnace and coil independently.</td>
</tr>
<tr>
<td>3. Screw through the coil cabinet into the furnace flange. Guide holes are located on the coil.</td>
<td>3. Screw through the coil cabinet into the furnace flange. Guide holes are located on the coil.</td>
</tr>
<tr>
<td>Note: There are no longer guide holes located on the furnace flange.</td>
<td>Note: There are no longer guide holes located on the furnace flange.</td>
</tr>
<tr>
<td>4. Seal per local codes and requirements.</td>
<td>4. Seal per local codes and requirements.</td>
</tr>
</tbody>
</table>
Furnace in Horizontal Right with "A" Coil
1. Bend furnace flanges down.
2. Support the furnace and coil independently.
3. Match the coil up flush to the back of the furnace.
4. Seal per local codes and requirements.

Note: Flat or dedicated horizontal coils may require flanges to be bent upward.

Downflow Furnace with Coil
1. Bend furnace flanges down.
2. Set the furnace on top of the coil so that it is flush with the back of the furnace.
3. Seal per local codes and requirements.
Horizontal Right and Downflow Furnace — no Coil

Important: A BAYBASE is required when installing the furnace on a combustible floor.

1. Bend furnace flanges up.
2. Attach ducting.
3. Seal per local codes and requirements.
Table 7. Return Duct Connections

Return Ducting General Guidelines
- Back returns are not allowed on any S-Series Furnaces
- Side returns are not allowed on downflow or horizontal S-Series Furnaces
- Mounting flanges must be located on ducting
- Shoot screws through the mount flanges into the furnace cabinet
- Always seal per local codes and requirements
- Furnace, coil, and ducting must be supported separately
- An external overflow drain pan must be installed in all applications over a finished ceiling to prevent property damage

Upflow Furnace with Bottom Return in Closet with Remote Filter
1. Remove the bottom plate.
2. Set the furnace on the base inside closet.
3. Install remote filter.
4. Seal per local codes and requirements.

Upflow Furnace with Bottom Return in Closet with Filter Box
1. Remove the bottom plate.
2. Set the furnace on the filter box inside closet.
3. Must have grille present for air.
4. Seal per local codes and requirements.
Table 7. Return Duct Connections (continued)

<table>
<thead>
<tr>
<th>Upflow Furnace with Bottom Return Mounted on a Ducted Pedestal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Remove the bottom plate.</td>
<td></td>
</tr>
<tr>
<td>2. Set the furnace on the ducted pedestal. The ducted pedestal will use ducted air from a remote location.</td>
<td></td>
</tr>
<tr>
<td>3. Install filter at a remote location.</td>
<td></td>
</tr>
<tr>
<td>4. Seal per local codes and requirements.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Upflow Furnace with Bottom Return Mounted on a Ducted Pedestal with Filter Box</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Remove the bottom plate.</td>
<td></td>
</tr>
<tr>
<td>2. Set the furnace on the filter box. The ducted pedestal will use ducted air from a remote location.</td>
<td></td>
</tr>
<tr>
<td>3. Seal per local codes and requirements.</td>
<td></td>
</tr>
</tbody>
</table>
Table 7. Return Duct Connections (continued)

Upflow Furnace with Bottom and Side Returns Mounted on a Ducted Pedestal with Side Return and Filter Box

Important: Make sure the thermostat wiring hole is sealed on the cabinet side with the side return.

Important: Make sure not to cut the cabinet in the "No Cut" area.

1. Remove the bottom plate.
2. Create ducting and set the furnace in place.

Note: Use Optional BAYLIFT kit to lift furnace. Follow kit instructions.

Note: The furnace bottom pedestal must be a minimum of 6" in height.

3. Match the filter cabinet flush to the back and bottom sides of the furnace cabinet and secure in place with screws.
4. Mark the two areas to be cut out for the return air.
5. Cut out the two sections of the cabinet and BAYLIFT kit to be removed.
6. Attach ducting to the filter box.
7. The ducted pedestal will use ducted air from a remote location.
8. Seal per local codes and requirements.

Cabinet cutout when used with BAYLIFT

21" Filter Cabinet with BAYLIFT Kit shown

No Cut Area Cutouts Flush with back of furnace cabinet
Table 7. Return Duct Connections (continued)

<table>
<thead>
<tr>
<th>Upflow Furnace with Side Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important: Make sure the thermostat wiring hole is sealed on the cabinet side with the side return.</td>
</tr>
<tr>
<td>Important: Make sure not to cut the cabinet in the "No Cut" area.</td>
</tr>
<tr>
<td>1. Using guides, remove the cutout for the side return.</td>
</tr>
<tr>
<td>2. Create ducting and set the furnace in place. Use screws to attach ducting to the furnace cabinet.</td>
</tr>
<tr>
<td>Note: If using a filter box, use a transition, if possible, to attach the filter box to the furnace cabinet.</td>
</tr>
<tr>
<td>3. Seal bottom panel per local codes and requirements.</td>
</tr>
<tr>
<td>4. Seal all other panels per local codes and requirements.</td>
</tr>
</tbody>
</table>

![Diagram of Upflow Furnace with Side Return]

<table>
<thead>
<tr>
<th>Upflow Furnace with Two Side Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important: One of the sides must have a transition to allow the thermostat wiring to exit the cabinet.</td>
</tr>
<tr>
<td>Important: If a transition is not a viable option, a hole will need to be drilled in the side of the cabinet for the thermostat wiring to exit.</td>
</tr>
<tr>
<td>Important: Make sure not to cut the cabinet in the "No Cut" area.</td>
</tr>
<tr>
<td>Note: If using one transition, the thermostat wiring will exit on the transition side.</td>
</tr>
<tr>
<td>1. Using guides, remove the two cutouts for the side returns.</td>
</tr>
<tr>
<td>2. Create ducting and set the furnace in place. Use screws to attach ducting to the furnace cabinet.</td>
</tr>
<tr>
<td>Note: If using a filter boxes, use transitions, if possible, to attach the filter boxes to the furnace cabinet.</td>
</tr>
<tr>
<td>3. Seal bottom panel per local codes and requirements.</td>
</tr>
<tr>
<td>4. Seal all other panels per local codes and requirements.</td>
</tr>
</tbody>
</table>

![Diagram of Upflow Furnace with Two Side Returns]
Table 7. Return Duct Connections (continued)

<table>
<thead>
<tr>
<th>Downflow Furnace with Top Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Remove the top plate.</td>
</tr>
<tr>
<td>2. Attach the ducting to the top of the furnace.</td>
</tr>
<tr>
<td>3. Install remote filter.</td>
</tr>
<tr>
<td>4. Seal per local codes and requirements.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Downflow Furnace with Top Return and Plenum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Remove the top plate.</td>
</tr>
<tr>
<td>2. Attach the plenum ducting to the top of the furnace.</td>
</tr>
<tr>
<td>3. Install remote filter.</td>
</tr>
<tr>
<td>4. Seal per local codes and requirements.</td>
</tr>
</tbody>
</table>
Table 7. Return Duct Connections (continued)

<table>
<thead>
<tr>
<th>Downflow Furnace with Top Return and Plenum with Filter Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Remove the top plate.</td>
</tr>
<tr>
<td>2. Attach the filter box to the top of the furnace.</td>
</tr>
<tr>
<td>3. Attach ducting.</td>
</tr>
<tr>
<td>4. Seal per local codes and requirements.</td>
</tr>
</tbody>
</table>

![Diagram of Downflow Furnace with Top Return and Plenum with Filter Box]
Furnace General Installation

Return Air Filters

TYPICAL AIR FILTER INSTALLATIONS

Filters are not factory supplied for furnaces. Filter size needed will be dependent on type of filter and CFM requirement. Filters must be installed externally to the unit.

Important: It is recommended to transition return ducting to the same size as the opening. It is acceptable for return duct or filter frame to extend forward of the opening but plastic plugs MUST be installed in any opening that the duct or filter frame may cover.

<table>
<thead>
<tr>
<th>Furnace Width</th>
<th>Qty and Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>14–1/2"</td>
<td>1 — 14" x 25" x 1"</td>
</tr>
<tr>
<td>17–1/2"</td>
<td>1 — 16" x 25" x 1"</td>
</tr>
<tr>
<td>21"</td>
<td>1 — 20" x 25" x 1"</td>
</tr>
<tr>
<td>24–1/2"</td>
<td>1 — 24" x 25" x 1"</td>
</tr>
</tbody>
</table>

Note: For upflow airflow furnaces where the airflow requirement exceeds 1600 CFM - Furnaces will require return air openings and filters on: (1) both sides, or (2) one side and the bottom, or (3) just on the bottom.

Preparation for Upflow Bottom and Side Return Air Filter Installations

All return air duct systems should provide for installation of return air filters.

1. Determine the appropriate position to set the furnace in order to connect to existing supply and return ductwork.
2. For upflow side return installations, remove the insulation around the opening in the blower compartment.
3. The side panels of the upflow furnace include locating notches that are used as guides for cutting an opening for return air, refer to the figure and the upflow furnace outline drawing for duct connection dimensions for various furnaces.
4. If a 3/4” flange is to be used for attaching the air inlet duct, add to cut where indicated by dotted lines. Cut corners diagonally and bend outward to form flange.
5. If flanges are not required, and a filter frame is installed, cut between locating notches as in illustration.
6. The bottom panel of the upflow furnace must be removed for bottom return air.

* SEE OUTLINE DRAWING
1. When the furnace is installed in the horizontal right or left application and a return duct is attached to the top side, do not install a filter in the return duct directly above the furnace. Install the filter in a remote location.

When the furnace is installed in the horizontal right or left application and a [close coupled (less than 36") return duct is attached to the bottom side of the furnace as shown above, securely attach a 1/2" mesh metal hardware cloth protective screen to the inside bottom of the filter grille to prevent personal injury from contacting moving parts when reaching into the return opening to replace the filter.

Close coupled (less than 36") return (filter directly beneath bottom side return) is not recommended due to noise considerations.

2. Connect the duct work to the furnace. See Outline Drawing for supply and return duct size and location.

Flexible duct connectors are recommended to connect both supply and return air ducts to the furnace.

If only the front of the furnace is accessible, it is recommended that both supply and return air plenums are removable.

3. When replacing a furnace, old duct work should be cleaned out. Thin cloths should be placed over the registers and the furnace fan should be run for 10 minutes. Don't forget to remove the cloths before you start the furnace.

4. The horizontal installation of the upflow furnace requires an external filter section. Filter kits are available for horizontal applications.

RETURN AIR FILTERS FOR FURNACE IN HORIZONTAL CONFIGURATION

When the Furnace is installed in the horizontal configuration, the return air filters must be installed exterior to the furnace cabinet. Remote filter grilles may be used for homeowner convenience or the filters may be installed in the duct work upstream of the furnace.
Electrical Connections

Make wiring connections to the unit as indicated on enclosed wiring diagram. As with all gas appliances using electrical power, this furnace shall be connected into a permanently live electric circuit. It is recommended that furnace be provided with a separate “circuit protection device” electric circuit. The furnace must be electrically grounded in accordance with local codes or in the absence of local codes with the National Electrical Code, ANSI/NFPA 70, if an external electrical source is utilized. The integrated furnace control is polarity sensitive. The hot leg of the 120V power supply must be connected to the black power lead as indicated on the wiring diagram.

Refer to the SERVICE FACTS literature and unit wiring diagram attached to furnace.

Field Wiring

FIELD WIRING DIAGRAM FOR S8X1 SINGLE STAGE HEATING THERMOSTAT, ONE / TWO STAGE AC OR HEAT PUMP

NOTES:
1) HP = Wiring used for Heat Pump systems.
2) Y1 and/or Y2 must connect from the thermostat to the IFC for proper airflow.
3) A/TCONT824 thermostats do not require the use of X2.

FIELD WIRING DIAGRAM FOR S8X2 TWO STAGE HEATING THERMOSTAT, ONE / TWO STAGE AC OR HEAT PUMP

NOTES:
1) HP = Wiring used for Heat Pump systems.
2) Y1 and/or Y2 must connect from the thermostat to the IFC for proper airflow.
3) Remove Y1 - O jumper on IFC for HP systems.
4) If the thermostat does not have W2, or there are not enough conductors jumper W1 to W2 at the IFC.
5) A/TCONT824 thermostats do not require the use of X2.
Twinning

TWINNING CONNECTION DIAGRAM
FOR TWINNING S-SERIES FURNACES
2 STAGE HEAT / 1 STAGE COOLING THERMOSTAT

NOTES:
1. BOTH FURNACES MUST BE POWERED FROM
 THE SAME 115 VAC PHASE LEG AT THE CIRCUIT BREAKER.
2. TRANSFORMERS MUST BE IN PHASE.
3. MEASURE THE VOLTAGE BETWEEN THE "R" TERMINALS
 ON BOTH FURNACES; VOLTAGE SHOULD BE LESS THAN
 10 VOLS.
4. IF GREATER, REVERSE THE LOW VOLTAGE ON ONE OF THE
 TRANSFORMERS AND RECHECK.
5. HEATING AND COOLING AIRFLOW MUST BE THE SAME FOR
 BOTH FURNACES.
6. OD UNIT TYPE SETUP MUST BE THE SAME FOR BOTH FURNACES.

2 STAGE HEATING
1 STAGE COOLING THERMOSTAT
FURNACE NO. 1
FURNACE NO. 2

Y1
W1
W2
R
G
B

Y1
W1
W2
R
G
B

Y1
W1
W2
R
G
B

1 STAGE ODU
(MO TRANSFORMER)

ISOLATION RELAY R1
R2

18-CE04D1-1B-EN

Furnace General Installation
Furnace General Installation

TWINNING CONNECTION DIAGRAM

FOR TWINNING S-SERIES FURNACES

2 STAGE HEAT / 2 STAGE COOLING THERMOSTAT

NOTES:
1. BOTH FURNACES MUST BE POWERED FROM THE SAME 115 VAC PHASE LEG AT THE CIRCUIT BREAKER.
2. TRANSFORMERS MUST BE IN PHASE.
 - MEASURE THE VOLTAGE BETWEEN THE "R" TERMINALS ON BOTH FURNACES. VOLTAGE SHOULD BE LESS THAN 10 VOLTS.
 - IF GREATER, REVERSE THE LOW VOLTAGE ON ONE OF THE TRANSFORMERS AND RECHECK.
3. HEATING AND COOLING AIRFLOW MUST BE THE SAME FOR BOTH FURNACES.
4. OD UNIT TYPE SETUP MUST BE THE SAME FOR BOTH FURNACES.
Furnace General Installation

TWINNING CONNECTION DIAGRAM
FOR TWINNING S-SERIES FURNACES
2 STAGE HEAT / 1 STAGE COOLING
(WITH TRANSFORMER) THERMOSTAT

NOTES:
1. BOTH FURNACES MUST BE POWERED FROM
 THE SAME 115 VAC PHASE LEG AT THE CIRCUIT BREAKER.
2. TRANSFORMERS MUST BE IN PHASE.
3. MEASURE THE VOLTAGE BETWEEN THE "R" TERMINALS
 ON BOTH FURNACES. VOLTAGE SHOULD BE LESS THAN
 10 VOLTS.
4. IF GREATER, REVERSING THE LOW VOLTAGE ON ONE OF THE
 TRANSFORMERS AND RECHECK.
5. HEATING AND COOLING AIRFLOW MUST BE THE SAME FOR
 BOTH FURNACES.
6. CD UNIT TYPE SETUP MUST BE SET FOR 1-1.

OUTDOOR UNIT
(WITH TRANSFORMER)

INTER-COMPONENT WIRING

--- 24 V. LINE V. FIELD WIRING
--- 24 V. LINE V. FACTORY WIRING

From Dwg. 21B341337 Rev. 2
TWINNING CONNECTION DIAGRAM FOR TWINNING S-SERIES FURNACES
2 STAGE HEAT / 1 STAGE COOLING THERMOSTAT
WITH SINGLE STAGE THERMOSTAT

NOTES:
1. BOTH FURNACES MUST BE POWERED FROM THE SAME 115 VAC PHASE LEG AT THE CIRCUIT BREAKER.
2. TRANSFORMERS MUST BE IN PHASE.
 - MEASURE THE VOLTAGE BETWEEN THE “R” TERMINALS ON BOTH FURNACES, VOLTAGE SHOULD BE LESS THAN 10 VOLTS.
 - IF GREATER, REVERSE THE LOW VOLTAGE ON ONE OF THE TRANSFORMERS AND RECHECK.
3. HEATING AND COOLING AIRFLOW MUST BE THE SAME FOR BOTH FURNACES.
4. DO UNIT TYPE SETUP MUST BE THE SAME FOR BOTH FURNACES.
5. WHEN USING A SINGLE STAGE THERMOSTAT, JUMPER W1/W2 TOGETHER. THE INTERSTAGE DELAY MUST BE SET THE SAME FOR BOTH UNITS.

See Note 5
General Start-up and Adjustment

The following sections give instructions for the general start-up and adjustment of the gas furnaces.

Preliminary Inspections

With gas and electrical power "OFF", ensure:

1. Duct connections are properly sealed.
2. Filters are in place.
3. Venting is properly assembled.
4. Blower vestibule panel is in place and all screws in place.

Turn knob on main gas valve within the unit to the "OFF" position.

Turn the external gas valve to "ON". Purge the air from the gas lines. After purging, check all gas connections for leaks with a soapy solution.

--- DO NOT CHECK WITH AN OPEN FLAME. Allow 5 minutes for any gas that might have escaped to dissipate. Turn the gas valve in the unit to the "ON" position.

Propane Gas being heavier than air may require forced ventilation. Turn the toggle switch on the Gas Valve in the unit to the "ON" position.

Lighting Instructions

Lighting instructions appear on each unit. Each installation must be checked out at the time of initial start up to ensure proper operation of all components. Check out should include putting the unit through one complete cycle as outlined below.

Turn on the main electrical supply and set the comfort control above the indicated temperature. The ignitor will automatically heat, then the gas valve is energized to permit the flow of gas to the burners. After ignition and flame is established, the flame control module monitors the flame and supplies power to the gas valve until the comfort control is satisfied.

WARNING

FIRE OR EXPLOSION HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

Do NOT attempt to manually light the furnace.

CAUTION

FREEZE CAUTION!

Failure to follow this Caution could result in property damage or personal injury.

If complete furnace shutdown is done during the cold weather months, provisions must be taken to prevent freeze-up of all water pipes and water receptacles.

To shut off

For complete shutdown: Turn the toggle or control switch located on the main gas valve inside the unit to the "OFF" position and the external main gas shutoff valve to the "OFF" position. Disconnect the electrical supply to the unit.

Whenever your house is to be vacant, arrange to have someone inspect your house for proper temperature. This is very important during freezing weather. If for any reason your furnace should fail to operate damage could result, such as frozen water pipes.

Control and Safety Switch Adjustment

LIMIT SWITCH CHECK OUT

The limit switch is a safety device designed to close the gas valve should the furnace become overheated. Since proper operation of this switch is important to the safety of the unit, it must be checked out on initial start up by the installer.

To check for proper operation of the limit switches, set the thermostat to a temperature higher than the indicated temperature to bring on the gas valve. Restrict the airflow by blocking the return air to the blower. When the furnace reaches the maximum outlet temperature as shown on the rating plate, the burners must shut off. If they do not shut off after a reasonable time and overheating is evident, a faulty limit switch is probable and the limit switch must be replaced. After checking the operation of the limit control, be sure to remove the paper or cardboard from the return air inlet, or reconnect the blower.
Furnace Combustion Air Exhaust Options

Note: Default is left side for electric and gas connections.

The following sections give instructions for the different furnace orientations and the options for venting the exhaust combustion air.

Important: When looking at the different orientations, the direction of the combustion air exhaust in the illustration's description is after the furnace has been rotated, if needed.

Table 8. Venting Options for Upflow Applications

Refer to the illustrations below to find the approved venting options for upflow furnace.

Important: The exhaust must be vented to the outdoors.

<table>
<thead>
<tr>
<th>Upflow Orientation or Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vented out top.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Vented through left side.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Vented through right side.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 9. Venting Options for Horizontal Left Applications

Refer to the illustrations below to find the approved venting options for horizontal left furnace.

Important: The exhaust must be vented to the outdoors.

<table>
<thead>
<tr>
<th>Horizontal Left Orientation or Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Vented out top.
- Vented through left side.

Table 10. Venting Options for Horizontal Right Applications

Refer to the illustrations below to find the approved venting options for horizontal right furnace.

Important: The exhaust must be vented to the outdoors.

<table>
<thead>
<tr>
<th>Horizontal Right Orientation or Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Vented out top.
- Vented through right side.
Table 11. Venting Options for Downflow Applications

Refer to the illustrations below to find the approved venting options for downflow furnace models.

Important: The combustion air exhaust must be vented to the outdoors.

<table>
<thead>
<tr>
<th>Downflow Orientation or Installation</th>
<th>Vented out top.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: Requires kit BAYVENT600. Kit used with B, C, and D cabinets only.</td>
<td></td>
</tr>
<tr>
<td>Note: “A” cabinet furnaces must be vented through the left of right side openings.</td>
<td></td>
</tr>
<tr>
<td>Note: 4” Type B double wall vent pipe must be used inside of the furnace cabinet.</td>
<td></td>
</tr>
<tr>
<td>Vented through left side.</td>
<td></td>
</tr>
<tr>
<td>Vented through right side.</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image)
Combustion Air Conversions

Important: After deciding the orientation of the flue outlet, cut the metal tabs around the appropriate 5” metal cutout on the furnace cabinet and remove the cutout, if necessary.

Note: When rotating the inducer it may be necessary to cut the wire tie. A new wire tie must be installed once the inducer is rotated.

Note: Self-tapping screws are recommended for attaching the vent pipe to the inducer outlet.

Pressure Switch locations

S8X1: PS is connected to the hot header.
S8X2: PS1 is connected to the inducer. PS2 is connected to the hot header.

Upflow orientation with top venting

No changes need to be made to the inducer when installing the furnace in upflow position when vented through the top.

Note: Self-tapping screws are recommended for attaching the vent pipe to the inducer outlet.

Upflow orientation with left side venting

Before proceeding, lay unit on its back to make the conversion easier. The following changes need to be made to the inducer when installing the furnace in upflow position with the combustion air vented out the left side.

Note: When rotating the inducer it may be necessary to cut the wire tie. A new wire tie must be installed once the inducer is rotated.

1. Remove the four screws holding the inducer in place.
2. Rotate the inducer so the inducer outlet is pointing towards the 5” cutout.
3. Secure the inducer in place using the screws removed in step 1.
4. Attach the vent to the inducer outlet.

Note: Self-tapping screws are recommended for attaching the vent pipe to the inducer outlet.

Upflow orientation with right side venting

Before proceeding, lay unit on its back to make the conversion easier. The following changes need to be made to the inducer when installing the furnace in upflow position with the combustion air vented out the left side.

1. Remove the four screws holding the inducer in place.
2. Rotate the inducer so the inducer outlet is pointing towards the 5” cutout.
3. Secure the inducer in place using the screws removed in step 1.
4. Attach the vent to the inducer outlet.

Note: Self-tapping screws are recommended for attaching the vent pipe to the inducer outlet.
<table>
<thead>
<tr>
<th>Orientation</th>
<th>Instructions</th>
</tr>
</thead>
</table>
| **Horizontal left orientation with left side venting** | No changes need to be made to the inducer when installing the furnace in upflow position with the combustion air vented through the top.
Note: Self-tapping screws are recommended for attaching the vent pipe to the inducer outlet. |
| **Horizontal left orientation with top venting** | Before proceeding, lay unit on its back to make the conversion easier. The following changes need to be made to the inducer when installing the furnace in upflow position with the combustion air vented out the left side.
1. Remove the four screws holding the inducer in place.
2. Rotate the inducer so the inducer outlet is pointing towards the 5” cutout.
3. Secure the inducer in place using the screws removed in step 1.
4. Attach the vent to the inducer outlet.
Note: Self-tapping screws are recommended for attaching the vent pipe to the inducer outlet. |
| **Horizontal right orientation with right side venting** | No changes need to be made to the inducer when installing the furnace in upflow position with the combustion air vented through the top.
Note: Self-tapping screws are recommended for attaching the vent pipe to the inducer outlet. |
Horizontal right orientation with top venting
Before proceeding, lay unit on its back to make the conversion easier. The following changes need to be made to the inducer when installing the furnace in upflow position with the combustion air vented out the left side.

1. Remove the four screws holding the inducer in place.
2. Rotate the inducer so the inducer outlet is pointing towards the 5” cutout.
3. Secure the inducer in place using the screws removed in step 1.
4. Attach the vent outlet gasket to the vent outlet.

Note: Self-tapping screws are recommended for attaching the vent pipe to the inducer outlet.

Downflow orientation with left side venting
Before proceeding, lay unit on its back to make the conversion easier. The following changes need to be made to the inducer when installing the furnace in upflow position with the combustion air vented out the left side.

1. Remove the four screws holding the inducer in place.
2. Rotate the inducer so the inducer outlet is pointing towards the 5” cutout.
3. Secure the inducer in place using the screws removed in step 1.
4. Attach the vent to the inducer outlet.

Note: Self-tapping screws are recommended for attaching the vent pipe to the inducer outlet.
Downflow orientation with right side venting

Before proceeding, lay unit on its back to make the conversion easier.

The following changes need to be made to the inducer when installing the furnace in upflow position with the combustion air vented out the left side.

1. Remove the four screws holding the inducer in place.
2. Rotate the inducer so the inducer outlet is pointing towards the 5” cutout.
3. Secure the inducer in place using the screws removed in step 1.
4. Attach the vent to the inducer outlet.

Note: Self-tapping screws are recommended for attaching the vent pipe to the inducer outlet.

Downflow orientation with top venting

Before proceeding, lay unit on its back to make the conversion easier.

The following changes need to be made to the inducer when installing the furnace in upflow position with the combustion air vented out the left side.

Note: Requires kit BAYVENT600. Kit used with B, C, and D cabinets only. Follow kit instructions for installation.

Note: 4” Type B double wall vent pipe must be used inside of the furnace cabinet.

1. Remove the four screws holding the inducer in place.
2. Rotate the inducer so the inducer outlet is pointing towards the 5” cutout.
3. Install BAYVENT600 kit per the kit instructions.
4. Attach the vent to the inducer outlet.

Note: Self-tapping screws are recommended for attaching the B Vent to the inducer outlet.
S8X1 Control System Menu Single Stage OD

SETTING UP YOUR SYSTEM:
To change any factory default value, first remove any "call" from the furnace and allow all fan off delays to finish. (1 dl should be seen on the display).

Scroll to the selected Menu item by momentarily depressing the “MENU” key and then depress the “OPTION” key to the desired setting. Then momentarily depress the “MENU” key again to save the change.

CLEARING THE LAST 6 FAULTS:
To clear the stored faults, scroll to the last 6 faults menu, enter the menu by scrolling to the right and hold the “Option” key for at least 5 seconds. Release and a set of 3 dashes will be seen 3 times. This confirms the faults have been cleared.

SELECTING COOLING / HP FAN SPEEDS for 1-1 ODU:
Scroll to the COP menu and momentarily push the OPTION key. Tap 7 is the default setting for all models. When selection is made, momentarily push the MENU key to save.

Default Airflow Taps
- Gas Heat = Tap 5
- ODU Menu 1-1
- Cooling / HP = Tap 7

SELECTING GAS HEATING FAN SPEEDS:
Scroll to the HcP menu and momentarily push the OPTION key. Tap #5 is the default setting for all models. When selection is made, momentarily push the MENU key to save.

NOTE: Tap 9 is not available for gas heating.
S8X1 Control System Menu Two Stage OD

SETTING UP YOUR SYSTEM:
To change any factory default value, first remove any “call” from the furnace and allow all fan off delays to finish. (1 dL should be seen on the display).

Scroll to the selected Menu item by momentarily depressing the “MENU” key and then depress the “OPTION” key to the desired setting. Then momentarily depress the “MENU” key again to save the change.

CLEARING THE LAST 6 FAULTS:
To clear the stored faults, scroll to the last 6 faults menu, enter the menu by scrolling to the right and hold the “Option” key for at least 5 seconds. Release and a set of 3 dashes will be seen 3 times. This confirms the faults have been cleared.

SELECTING COOLING / HP FAN SPEEDS for 2-1 ODU:
1st Stage Airflow: Scroll to the COP menu and momentarily push the OPTION key. Tap #3 is the default 1st stage setting for all models. When selection is made, momentarily push the MENU key to save.
2nd Stage Airflow: After 1st stage airflow is selected, the default 2nd stage airflow tap will appear, C2, 7. If this tap is desired, momentarily push the MENU key to save.

Important: If a change is made to either 1st or 2nd stage airflow, both must be saved by pushing the MENU key. Neither selection will be saved if this is not done.

Default Airflow Taps
Gas Heat = Tap 5

ODU Menu 2-1
1st Stage Cooling / HP = Tap 3
2nd Stage Cooling / HP = Tap 7

SELECTING GAS HEATING FAN SPEEDS:
Scroll to the HeP menu and momentarily push the OPTION key. Tap #5 is the default setting for all models. When selection is made, momentarily push the MENU key to save.

NOTE: Tap 9 is not available for gas heating.
S8X2
Control System Menu Single Stage OD

SETTING UP YOUR SYSTEM:
To change any factory default value, first remove any “call” from the furnace and allow all fan off delays to finish. (4 digits should be seen on the display)

Scroll to the selected Menu item by momentarily depressing the “MENU” key and then depress the “OPTION” key to the desired setting. Then momentarily depress the “MENU” key again to save the change.

CLEARING THE LAST 6 FAULTS:
To clear the stored faults, scroll to the right and hold the “Option” key for at least 5 seconds. Release and a set of 3 dashes will be seen 3 times. This confirms the faults have been cleared.

Default Airflow Taps
1st Stage Gas Heat = Tap 2
2nd Stage Gas Heat = Tap 5
ODU Menu 1-1
Cooling/HP = Tap 7

SELECTING COOLING / HP FAN SPEEDS FOR 1-1 ODU
Scroll to the COP menu and momentarily push the OPTION key. Tap 7 is the default setting for all models. When selection is made, momentarily push the MENU key to save.

SELECTING GAS HEAT FAN SPEEDS:
1st Stage Airflow: Scroll to the Heat menu and momentarily push the OPTION key. Tap #2 is the default 1st stage setting for all models. When selection is made, momentarily push the MENU key to save.
2nd Stage Airflow: After 1st stage airflow is selected, the default 2nd stage airflow tap will appear, H2.5. If this tap is desired, momentarily push the MENU key to save.

Note: Tap 9 is not available for heating.

Important: If a change is made to either 1 or 2 stage airflow, both must be saved by pushing MENU key. Neither selection will be saved if this is not done.
S8X2
Control System Menu Two Stage OD

SETTING UP YOUR SYSTEM:
To change any factory default value, first remove any "call" from the furnace and allow all fan off delays to finish. (1st should be seen on the display)

Scroll to the selected Menu item by momentarily depressing the "MENU" key and then depress the "OPTION" key to the desired setting. Then momentarily depress the "MENU" key again to save the change.

CLEARING THE LAST 6 FAULTS:
To clear the displayed faults, scroll to the last 6 faults menu, enter the menu by scrolling to the right and hold the "Option" key for at least 5 seconds. Release and a set of 3 dashes will be seen 3 times. This confirms the faults have been cleared.

SELECTING COOLING/HP FAN SPEEDS FOR 2.1 ODU
1st Stage Airflow: Scroll to the COP menu and momentarily push the OPTION key. Tap #3 is the default 1st stage setting for all models. When selection is made, momentarily push the MENU key to save. 2nd Stage Airflow: After 1st stage airflow is selected, the default 2nd stage airflow tap will appear, C2_1. If this tap is desired, momentarily push the MENU key to save.

Important: If a change is made to either 1st or 2nd stage airflow, both must be saved by pushing the MENU key. Neither selection will be saved if this is not done.

SELECTING GAS HEAT FAN SPEEDS:
1st Stage Airflow: Scroll to the HTP menu and momentarily push the OPTION key. Tap #2 is the default 1st stage setting for all models. When selection is made, momentarily push the MENU key to save.

2nd Stage Airflow: After 1st stage airflow is selected, the default 2nd stage airflow tap will appear, H2_5. If this tap is desired, momentarily push the MENU key to save. Taps 3 and 4 are also available.

Important: If a change is made to either 1st or 2nd stage airflow, both must be saved by pushing the MENU key. Neither selection will be saved if this is not done.

NOTE: Tap 9 is not available for gas heating.

Important: If a change is made to either 1st or 2nd stage airflow, both must be saved by pushing the MENU key. Neither selection will be saved if this is not done.
S8X1 - S8X2
System Status Menu

IdL = Idle, no demand for cooling, heating, or fan
Ht 1 = Demand for 1st stage gas heat (Ht = S8X1)
Ht 2 = Demand for 2nd gas heat
CL 1 = Demand for 1st stage cooling (CP 1 = S8X1)
CL 2 = Demand for 2nd stage cooling (CP 2 = S8X1)
HP 1 = Demand for 1st stage gas heat pump (CP 1 = S8X1)
HP 2 = Demand for 2nd stage heat pump (CP 2 = S8X1)
COF = Demand for continuous fan
dFt = Demand for outdoor unit defrost, furnace running in gas heat mode
tP 1-9 = Tap selected for airflow

Note:
1. The menu status displayed is solely dependent on the input of 24VAC that is applied to the low voltage terminal strip.
2. The status will alternate between the system mode and the airflow request every 2 seconds.
3. If an error occurs, an E*. will alternately flash with the system mode and airflow request. See first example.
Setting Airflow

With all ductwork connected and a clean filter in place, measure the External Static Pressure (ESP) of the unit in locations below. Use the appropriate airflow table for the furnace and outdoor unit installed.

Measurements must be made prior to the evaporator coil, if equipped, and after the filter.

Furnace Airflow (CFM) Vs. External Static Pressure (in. W.C.)

<table>
<thead>
<tr>
<th>Model</th>
<th>Tap</th>
<th>0.1</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>S8X1B080M4PSAA</td>
<td>1</td>
<td>633</td>
<td>297</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>S8X2B080M4PSAA</td>
<td>2</td>
<td>957</td>
<td>800</td>
<td>719</td>
<td>428</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1220</td>
<td>1080</td>
<td>940</td>
<td>800</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1403</td>
<td>1298</td>
<td>1192</td>
<td>1087</td>
<td>981</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1524</td>
<td>1428</td>
<td>1336</td>
<td>1248</td>
<td>1164</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1684</td>
<td>1574</td>
<td>1544</td>
<td>1401</td>
<td>1337</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1700</td>
<td>1625</td>
<td>1551</td>
<td>1476</td>
<td>1401</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1858</td>
<td>1790</td>
<td>1723</td>
<td>1656</td>
<td>1589</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1967</td>
<td>1898</td>
<td>1829</td>
<td>1760</td>
<td>1691</td>
</tr>
</tbody>
</table>

(a) Example 1, 2
(b) Example 1
(c) Example 2

Example 1: S8X2B080M4PSAAA (Default Tap 7)
- **Cooling / HP**
 - 3 Ton Single Stage Outdoor
 - Total ESP = 0.7” W.C.
 - Required Airflow = 1050 cfm (3T x 350 cfm/ton)
 - New Tap Number = Tap 4

Example 2: S8X2B080M4PSAA (Default Tap 3 & 7)
- 4 Ton Two Stage Outdoor
- Total 2nd Stage ESP = 0.9” W.C.
- Total 1st Stage ESP = 0.6” W.C.
- Required 2nd Stage Airflow = 1400 cfm (4T x 350 cfm/ton)
- Required 1st Stage Airflow = 1050 cfm (2nd stage airflow x .75)
- New 2nd Stage Tap Number = Tap 7 (no change)
- New 1st Stage Tap Number = Tap 4
Integrated Furnace Control Display Codes

Menu Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IdL</td>
<td>Idle</td>
</tr>
<tr>
<td>Err</td>
<td>Active Alarm Menu</td>
</tr>
<tr>
<td>L6F</td>
<td>Last 6 Faults (To clear — Hold Option button down for 5 seconds after entering the L6F menu)</td>
</tr>
<tr>
<td>Cr</td>
<td>Code Release Number</td>
</tr>
<tr>
<td>C0d</td>
<td>Cooling Off Delay (Seconds)</td>
</tr>
<tr>
<td>BdU</td>
<td>Outdoor Unit Type (Single / Two Stage)</td>
</tr>
<tr>
<td>C0F</td>
<td>Blower Constant Fan Airflow</td>
</tr>
<tr>
<td>H0d</td>
<td>Heat Off Delay (Seconds)</td>
</tr>
<tr>
<td>I5d</td>
<td>Inter-Stage Delay (Seconds)</td>
</tr>
<tr>
<td>ShC</td>
<td>Gas Heating CFM (1st and 2nd stage airflow are selectable)</td>
</tr>
<tr>
<td>rUn</td>
<td>Test Mode</td>
</tr>
</tbody>
</table>

Error Codes

<table>
<thead>
<tr>
<th>Alarm Error Code</th>
<th>Alarm Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01</td>
<td>Loss of the IRQ or other internal failures (Internal IFC error)</td>
</tr>
<tr>
<td>E2.1</td>
<td>Retry Exceeded (Flame never sensed, one hour lockout after 3 times)</td>
</tr>
<tr>
<td>E2.2</td>
<td>Recycles Exceeded (Flame sensed then lost, one hour lockout after 10 times)</td>
</tr>
<tr>
<td>E2.3</td>
<td>1st Stage Gas Valve Not Energized When It Should Be exceeded after 10 times</td>
</tr>
<tr>
<td>E3.1</td>
<td>Shorted Pressure Switch, 1st Stage</td>
</tr>
<tr>
<td>E3.2</td>
<td>Open Pressure Switch, 1st Stage</td>
</tr>
<tr>
<td>E3.3</td>
<td>Shorted Pressure Switch, 2nd Stage (S8X2 only)</td>
</tr>
<tr>
<td>E3.4</td>
<td>Open Pressure Switch, 2nd Stage (S8X2 only)</td>
</tr>
<tr>
<td>E04</td>
<td>Open Limit (Main Thermal, Rollout Switch, or Reverse Airflow Switch)</td>
</tr>
<tr>
<td>E05</td>
<td>Flame detected, should not be present</td>
</tr>
<tr>
<td>E6.1</td>
<td>Voltage reversed polarity</td>
</tr>
<tr>
<td>E6.2</td>
<td>Bad grounding</td>
</tr>
</tbody>
</table>
| E6.3 | (1) Igniter relay fails
(2) Igniter open |
| E7.1 | 1st stage gas valve (MVL) is energized when it should be off |
| E08 | Flame current is low, but still strong enough to allow operation |
| E11 | (1) 1st stage gas valve not energized when it should be
(2) 1st stage gas valve relay stuck closed |
| E12 | (3) 2nd stage gas valve relay stuck closed
(4) 2nd stage gas valve energized when it should not be
(5) 2nd stage gas valve not energized when it should be |
| E13 | Open fuse |
Fault Code Recovery

1. To view the last 6 faults, press the "Menu" key until the "Last 6 Faults" (L6F) menu appears.
2. Enter the menu by pressing the "Option" key.
3. The last 6 faults can be viewed.

Clearing the Last 6 Faults

1. To clear the last 6 faults, press the "Menu" key until the "Last 6 Faults" (L6F) menu appears.
2. Enter the menu by pressing the "Option" key.
3. Hold the "Option" key for at least 5 seconds.
4. Release and a set of 3 dashes will be seen 3 times. This confirms the faults have been cleared.

Resetting Factory Defaults

1. Display must be in Idle Mode.
2. Push the "Menu" and "Option" buttons at the same time for 15 seconds then release.
3. The 7 segment will flash "FD" 3 times. This confirms the unit has been reset to the factory defaults.
Sequence of Operation S8X1/S8X2

Note: The seven-segment LED readout is based on thermostat input. For the S8X2, during simultaneous call for W1 and W2, the seven-segment LED will read “Xt2”, although the IFC will process the call for 1st stage heat first.

EAC and HUM Timing
- EAC relay closes approximately 2 seconds after the blower starts.
- EAC relay opens when the blower motor stops.
- HUM relay closes on any heating call (HP/Gas) approximately 1 second after the blower motor starts.
- HUM relay opens when any heating call (HP/Gas) is removed.

1st Stage Gas Heating
1. R – W1 contacts close on the thermostat sending 24VAC to the W1 low voltage terminal of the IFC. Technician should read 24VAC from W1 to B/C. The seven segment LED will read: .
 - \(H_1 = S8X1 \)
 - \(H_1 = S8X2 \)
2. The IFC performs a self-check routine and then confirms:
 a. Flame roll-out switches (FRS) 1 & 2, main thermal limit (TCO), and any reverse air flow (RAF) switches are closed by sending 24VAC out the HLO terminal and monitoring the HLL input.
 b. Pressure switch 1 (PS1) and pressure switch 2 (PS2=S8X2 only) are opened by sending 24VAC out the HLO terminal, through the limit switches, and monitoring the PS1 (3) and PS2 (7) inputs.

 Note: If a thermal limit is open, 24VAC will not be present at either pressure switch.
3. After steps a & b are confirmed, the inducer relay is closed, energizing the inducer motor.
4. As the inducer ramps up, PS1 will close.
5. When PS1 closes, the ignitor relay on the IFC will close. The ignitor is energized. The ignitor warm up is approximately 17 seconds.
6. After the ignitor warm up, the 1st stage gas valve relay is closed, which energizes the 1st stage gas valve solenoid to allow ignition.
7. The first burner will ignite, and flame will crossover to the remaining burners establishing current to the flame sensor. Flame sensing must be established within 4 seconds.

2nd Stage Gas Heating (S8X2 Only)
1. See sequence of operation for 1st stage gas heating operation above (steps 1–7)

Note: 2nd stage heating cannot operate without 1st stage operation.
2. R-W2 contacts close on the thermostat sending 24VAC from to the W2 low voltage terminal of the IFC. Technician should read 24VAC from W2 to B/C. The seven-segment LED will read \(H_2 \).
3. The IFC checks to ensure that PS2 is open, and then energizes the 2nd stage inducer relay. The inducer is energized on high speed, and the second stage gas valve relay on the IFC closes, energizing second stage gas valve. The indoor blower motor will ramp up to the 2nd stage gas heating speed. The seven-segment LED for example will alternately read:
 - \(H_2 = \text{Gas heating} = S8X1 \)
 - \(H_2 = \text{Gas heating, stage 1} = S8X2 \)
 - Tap 3
4. The IFC monitors PS2 for closure and if PS2 does not close within 45 seconds, a PS2 open error will be declared and the furnace will operate in 1st stage. If PS2 closes, 2nd stage gas heating will continue until the thermostat R-W2 contacts open.
Sequence of Operation S8X1/S8X2

Note: If PS2 does not close within the 45 seconds, the IFC will wait 10 minutes and repeat steps 3 & 4. If on the third attempt during the same heating call, PS2 does not close within the 45 second proving time, the unit will run in 1st stage until the thermostat R-W2 contacts open.

5. When the temperature raises enough to satisfy the thermostat setting, contacts R-W2 will open, the 2nd stage gas valve will close, the indoor blower motor will ramp down to 1st stage, and the unit will continue to run until R-W1 contacts open.

6. When the temperature raises enough to satisfy the thermostat setting, contacts R-W1 will open.

7. The gas valve relay will open, closing the gas valve. The inductor will continue to run for approximately 5 seconds to remove any combustion byproducts from inside the furnace.

8. The indoor blower continues to run to remove heat from the heat exchangers. This blower off time is field adjustable through the IFC menu setup option.

The seven-segment LED will read 1DL = Idle, no thermostat demand.

Single Stage Cooling

1. R-Y1-G contacts on the thermostat close sending 24VAC to the Y1 and G low voltage terminals on the IFC. Technician should read 24VAC between Y1-B/C and between G-B/C.

Note: For S8X2 units, the factory supplied Y1-O jumper must remain in place for proper seven-segment LED readout, and furnace operation. If removed, the seven-segment LED will read "1DL".

2. 24VAC is sent to the OD unit via thermostat wiring.

3. The indoor blower ramps to the cooling airflow. The seven-segment LED for example will alternately read:

- CL1 = Cooling, Stage 1 (S8X2)
- CP1 = Cooling, Stage 1 (S8X1)
- TP3 = Tap 3

4. When the temperature is lowered enough to satisfy the thermostat setting, contacts R-Y-G will open.

5. The OD unit shuts off and the indoor blower shuts off, unless a "Cool Off Delay" has been enabled in the IFC setup menu options. The seven-segment LED will read "1DL = Idle, no thermostat demand.

Two Stage Cooling

1. See sequence of operation for single stage cooling operations above (steps 1–3).

2. R-Y2 contact on the thermostat close sending 24VAC to Y2 low voltage terminal on the IFC. Technician should read 24VAC between Y2 and B/C.

3. 24VAC is sent to the OD unit via thermostat wiring.

4. The indoor airflow ramps to 2nd stage airflow. The seven-segment LED for example will read:

- CL2 = Cooling, Stage 2 (S8X2)
- CP2 = Cooling, Stage 2 (S8X1)
- TP3 = Tap 7

5. When the temperature is raised enough to satisfy the thermostat setting, contacts R-Y1-Y2-G will open.

6. The OD unit shuts off and the indoor blower shuts off, unless a "Blower Off Delay" has been enabled in the IFC setup menu options. The seven-segment LED will read 1DL = Idle, no thermostat demand.

Single Stage Heat Pump

1. R-Y1-G contacts on the thermostat close sending 24VAC to the Y1 and G low voltage terminals on the IFC. Technician should read 24VAC between Y1-B/C and between G-B/C.

Note: For S8X2 units, the factory supplied Y1-O jumper must be removed for proper seven-segment LED readout and furnace operation. If left in place, the seven-segment LED will read 1DL.

2. 24 VAC is sent to the OD unit via thermostat wiring.

3. The indoor blower ramps to the cooling airflow. The seven-segment LED for example will alternately read:

- HP1 = Cooling, Stage 1 (S8X2)
- CP1 = Cooling, Stage 1 (S8X1)
- TP3 = Tap 3

4. When the temperature is lowered enough to satisfy the thermostat setting, contacts R-Y-G will open.

5. The OD unit shuts off and the indoor blower shuts off, unless a "Cool Off Delay" has been enabled in the IFC setup menu options.

Two Stage Heat Pump

1. See sequence of operation for single stage cooling operations above (steps 1–3).

2. R-Y2 contact on the thermostat close sending 24VAC to Y2 low voltage terminal on the IFC. Technician should read 24VAC between Y2 and B/C.

3. 24VAC is sent to the OD unit via thermostat wiring.

4. The indoor airflow ramps to 2nd stage airflow. The seven-segment LED for example will read:

- HP2 = Cooling, Stage 2 (S8X2)
- CP2 = Cooling, Stage 2 (S8X1)
- TP3 = Tap 7

5. When the temperature is raised enough to satisfy the thermostat setting, contacts R-Y1-Y2-G will open.

6. The OD unit shuts off and the indoor blower shuts off, unless a "Blower Off Delay" has been enabled in the IFC setup menu options. The seven-segment LED will read 1DL = Idle, no thermostat demand.
Ingersoll Rand (NYSE: IR) advances the quality of life by creating comfortable, sustainable and efficient environments. Our people and our family of brands — including Club Car®, Ingersoll Rand®, Thermo King® and Trane® — work together to enhance the quality and comfort of air in homes and buildings; transport and protect food and perishables; and increase industrial productivity and efficiency. We are a global business committed to a world of sustainable progress and enduring results.

ingersollrand.com

Ingersoll Rand has a policy of continuous product and product data improvements and reserves the right to change design and specifications without notice. We are committed to using environmentally conscious print practices.