Installer's Guide # **Convertible Air Handlers** 2 — 5 Ton TEM6A0B24H21S TEM6A0B30H21S TEM6A0C36H31S TEM6A0C42H41S TEM6A0D48H41S TEM6A0D60H51S The TEM6 series air handler is designed for installation in a closet, utility room, alcove, basement, crawlspace or attic. These versatile units are applicable to air conditioning and heat pump applications. Several models are available to meet the specific requirements of the outdoor equipment. Field installed electric resistance heaters are available. #### A SAFETY WARNING Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment. # SAFETY SECTION **AIR HANDLERS** Important: This document contains a wiring diagram, a parts list, and service information. This is customer property and is to remain with this unit. Please return to service information pack upon completion of work. Important: These instructions do not cover all variations in systems nor provide for every possible contingency to be met in connection with the installation. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to your installing dealer or local distributor. # **A** WARNING #### **HAZARDOUS VOLTAGE!** Failure to follow this Warning could result in property damage, severe personal injury, or death. Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/tagout procedures to ensure the power cannot be inadvertently energized. # **A** CAUTION ## **GROUNDING REQUIRED!** Failure to inspect or use proper service tools may result in equipment damage or personal injury. Reconnect all grounding devices. All parts of this product that are capable of conducting electrical current are grounded. If grounding wires, screws, straps, clips, nuts, or washers used to complete a path to ground are removed for service, they must be returned to their original position and properly fastened. ## **A** WARNING #### LIVE ELECTRICAL COMPONENTS! Failure to follow this Warning could result in property damage, severe personal injury, or death. Follow all electrical safety precautions when exposed to live electrical components. It may be necessary to work with live electrical components during installation, testing, servicing, and troubleshooting of this product. ### **A** WARNING ### PRESSURIZED REFRIGERANT! Failure to follow this Warning could result in personal injury System contains oil and refrigerant under high pressure. Recover refrigerant to relieve pressure before opening the system. Do no use nonapproved refrigerants or refrigerant substitutes or refrigerant additives. ### **A** CAUTION #### SHARP EDGE HAZARD! Failure to follow this Caution could result in property damage or personal injury. Be careful of sharp edges on equipment or any cuts made on sheet metal while installing or servicina. # **▲** CAUTION #### HAZARDOUS VAPORS! Failure to follow this caution could result in property damage or personal injury. Equipment corrosion damage. To prevent shortening its service life, the air handler should not be used during the finishing phases of construction or remodeling. The low return air temperatures can lead to the formation of condensate. Condensate in the presence of chlorides and fluorides from paint, varnish, stains, adhesives, cleaning compounds, and cement creates a corrosive condition which may cause rapid deterioration of the cabinet and internal components. ## CAUTION #### COIL IS PRESSURIZED! - Coil is pressurized with approximately 8-12 psi dry air and factory checked for leaks. - Carefully release the pressure by removing the rubber plug on the liquid line. - If no pressure is released, check for leaks. 18-GF74D1-1D-EN ©2015 Trane ## **A WARNING** #### SAFETY HAZARD! Fiberglass dust and ceramic fibers are believed by the state of California to cause cancer through inhalation. Glasswool fibers may also cause respiratory, skin, or eye irritation. ### PRECAUTIONARY MEASURES - Avoid breathing fiberglass dust - Use a NIOSH approved dust/mist respirator - Avoid contact with the skin or eyes. Wear longsleeved, loose fitting clothing, gloves, and eye protection - Wash clothes separately from other clothing, rinse washer thoroughly - Operations such as sawing, blowing, tear-out, and spraying may generate fiber concentrations requiring additional respiratory protection. Use the appropriate NIOSH approved respirator in these situations #### FIRST AID MEASURES - EYE CONTACT: FLUSH EYES WITH WATER TO REMOVE DUST. IF SYMPTOMS PERSIST, SEEK MEDICAL ATTENTION. - SKIN CONTACT: WASH AFFECTED AREA GENTLY WITH SOAP AND WARM WATER AFTER HANDLING. This warning complies with state of California law, Proposition 65. # **A** WARNING #### SAFETY HAZARD! This appliance is not to be used by persons (including children) with reduced physical, sensory, or mental capabilities, or lack of experience and knowledge, unless they have been given supervision or instruction. ### **A** WARNING ### **SAFETY HAZARD!** Children should be supervised to ensure that they do not play with the appliance. Important: Installation of this unit shall be made in accordance with the National Electric Code, NFPA No. 90A and 90B, and any other local codes or utilities requirements. Important: Air handlers do not require repositioning of the coil or drain pan for upflow or horizontal left applications. See the downflow and horizontal right installation sections for application instructions. Note: Air handlers have been evaluated in accordance with the Code of Federal Regulations, Chapter XX, Part 3280 or the equivalent. "SUITABLE FOR MOBILE HOME USE." Note: Condensation may occur on the surface of the air handler when installed in an unconditioned space. When units are installed in unconditioned spaces, verify that all electrical and refrigerant line penetrations on the air handler are sealed completely. Note: The manufacturer recommends installing ONLY A.H.R.I approved, matched indoor and outdoor systems. Some of the benefits of installing approved matched indoor and outdoor split systems are maximum efficiency, optimum performance, and the best overall system reliability. # **Table of Contents** | Features | Outline Drawing 19 | |------------------------------------|--------------------------------| | Installation Instructions 5 | Heater Pressure Drop Table20 | | Field Wiring 9 | Subcooling Adjustment 20 | | Electrical Data 11 | Coil Conversion Instructions21 | | Performance and Electrical Data 12 | Coil Conversion 24 | | Minimum Airflow CFM 17 | Checkout Procedures | # **Features** #### Table 1. Standard Features - MULTI-POSITION UPFLOW, DOWNFLOW, HORIZONTAL LEFT AND HORIZONTAL RIGHT - PAINTED FINISH ON GALVANIZED STEEL EXTERIOR WITH FULLY INSULATED CABINET THAT MEETS R4.2 VALUE - STURDY POLYCARBONATE DRAIN PANS - The TEM air handler has factory installed drain pans and is shipped for upflow and horizontal left applications - 208/230 VAC OPERATION - VARIABLE-SPEED DIRECT DRIVE BLOWER. - FACTORY INSTALLED R-410A THERMAL EXPANSION VALVE - ALL ALUMINUM COIL - BOTTOM RETURN - MEETS THE MINIMUM LEAKAGE REQUIREMENTS FOR THE FLORIDA AND CALIFORNIA BUILDING CODES #### Table 2. Optional Accessories - 4,5,8,10,15,20, and 25 KW SINGLE PHASE ELECTRIC HEATERS - Circuit breakers available on single phase 4, 5, 8, 10, 15, 20, and 25 KW heaters - Lugs available on single phase 4, 5, 8, and 10 KW heaters - Lugs available on three phase 10 and 15 KW heaters - SINGLE POINT POWER ENTRY KIT (for 15 and 20 KW heaters) - SUPPLY DUCT FLANGE KIT - DOWNFLOW SUB-BASE KITS TAYBASE185, TAYBASE235, TAYBASE260 - SLIM FIT FILTER BOX KIT BAYSF1185AAA, BAYSF1235AAA, BAYSF1265AAA # **Installation Instructions** #### 1. Unpacking Carefully unpack the unit and inspect the contents for damage. If any damage is found at the time of delivery, proper notification and claims should be made with the carrier. Check the rating plate to assure model number and voltage, plus any kits match with what you ordered. The manufacturer should be notified within 5 days of any discrepancy or parts shortage. #### 2. Location The air handler should be centrally located and may be installed in a closet, alcove, utility room, basement, crawl space or attic. Minimum clearances must be met. IMPORTANT: The downflow sub-base may be required with electric heat applications. See minimum clearance table. The unit must be installed in a level position to ensure proper condensation drainage. Make sure the unit is level in both directions within 1/8" on either side. When the unit is installed in a closet or utility room, the room should be large enough, and have an opening to allow replacement of the unit. All servicing is done from the front and a clearance of 21" is needed for service unless the closet door aligns with the front of the air handler. If you are installing the unit in an unconditioned space such as an attic or crawl space, you must ensure that the area provides sufficient air circulation to prevent moisture collection on the cabinet during high dew point conditions. A drain pan must be installed under the entire unit when it is installed in or above a finished ceiling or in an unconditioned space. #### 3. Duct Work The duct work should be installed in accordance with the NFPA No. 90A "Installation of Air Conditioning and Ventilating systems" and No. 90B "Residential Type Warm Air Heating and Air Conditioning Installation." The duct work should be insulated in accordance with the applicable requirements for the
particular installation as required by HUD, FHA, VA the applicable building code, local utility or other governing body. #### 4. Condensate Drain The unit is supplied with primary and auxiliary condensate drains that have 3/4" NPT connections. The primary drain must be trapped outside the unit and piped in accordance with applicable building codes. Do not reduce the drain line size less than the connection size on the drain pan. Condensate should be piped to an open drain or to the outside. All drains must pitch downward away from the unit a minimum of 1/4" per foot of line to ensure proper drainage. **IMPORTANT:** If cleanout Tee is used, stand pipe must be sealed/capped. Insulate the primary drain line to prevent sweating where dew point temperatures may be met. (Insulation is optional depending on climate and application needs.) #### 5. Refrigerant Piping Refrigerant piping external to the unit shall be sized in accordance with the instructions of the manufacturer of the outdoor equipment. #### 6. Metering Device All units are shipped and installed with an internally-checked, non-bleed TXV designed for air conditioning or heat pump operation. Some outdoor models may require a start assist kit. See outdoor unit for more information. #### 7. Blower This unit is supplied with a variable speed motor with a direct drive blower wheel which can obtain various air flows. The unit is shipped with factory set cooling and heating air flows. Performance tables are available for additional airflow settings. Disconnect all power to the unit before making any adjustments to the airflow settings. Be sure to check the air flow and the temperature drop across the evaporator coil to ensure sufficient air flow. #### 8. Airflow Adjustment ### **A** CAUTION #### **EQUIPMENT DAMAGE!** Failure to follow this procedure may result in equipment damage. Disconnect power to the air handler before changing dip switch positions. Blower speed changes are made on the ECM Fan Control. The ECM Fan Control controls the variable speed motor. There is a bank of 8 dip switches. The dip switches work in pairs to match the airflow for the outdoor unit size (tons). cooling airflow adjustment, Fan off-delay options, and heating airflow adjustment. The switches appear as shown in Figure 2, p. 6 Figure 1. ECM Fan Control Figure 2. Dip Switches DIP SWITCHES (TYPICAL SETTINGS) If the airflow needs to be increased or decreased, see the Airflow Label on the air handler or Blower Performance Table. Be sure to set the airflow for the correct tonnage. Switches 1-4 Cooling Airflow Switches 5-6 Fan Off Delay Options Switches 7-8 Auxiliary Heat #### **Indoor Blower Timing** IMPORTANT: Leave dip switches 5 and 6 in the "asshipped" positions during system startup and check out. Afterwards, adjust as desired. Table 3. Cooling Off — Delay Options | SWITCH S | SETTINGS | SELECTION | NOMINAL
AIRFLOW | |----------|----------|--------------|--------------------| | 5 — OFF | 6 — OFF | NONE | SAME | | 5 — ON | 6 — OFF | 1.5 MINUTES | 100% (a) | | 5 — OFF | 6 — ON | 3 MINUTES | 50% | | 5 — ON | 6 — ON | ENHANCED (b) | 50-100% | ⁽a) Default setting Figure 3. Enhanced Mode #### 9. Wiring Consult all schematic and pictorial wiring diagrams ⁽b) This ENHANCED MODE selection provides a ramping up and ramping down of the blower speed to provide improved comfort, quietness, and potential energy savings. The graph shows the ramping process. of this unit and the outdoor equipment to determine compatibility of wiring connections and to determine specific requirements. All field wiring to the air handler should be installed in accordance with the latest edition of the National Electric Code NFPA No. 70 and any local codes. Check rating plates on unit for rated volts, minimum circuit ampacity and maximum over current protection. Supply circuit power wiring must be 75 degree C (167 degree F) minimum copper conductors only. Copper supply wires shall be sized to the National Electric Code or local code requirements, whichever is more stringent. The unit is shipped wired for 230/240 Volt AC 60 HZ 1 Phase Operation. If the unit is to be operated at 208 VAC 60HZ, follow the instructions on the indoor unit wiring diagram to change the low voltage transformer to 208 VAC operation (Ensure unit is properly grounded). Class 2 low voltage control wiring should not be run in conduit with power wiring and must be separated from power wiring unless class 1 wire with proper voltage rating is used. Low voltage control wiring should be 18 Awg, color coded (105 degree C minimum). For lengths longer than 100ft., 16 Awg wire should be used. Make certain that separation of control wiring and power wiring has been maintained. #### 10. Air Filter To protect the coil, blower and other internal parts from excessive dirt and dust an air filter must be installed before air enters the evaporator coil. A remote filter must be installed. Consult the filter manufacturer for proper sizing and maximum velocity requirements. Important: Air filters shall meet the test requirements in UL 900. #### 11. Thermostat Select a thermostat that is commonly used with HP or AC single stage heating/cooling with electric heat. The thermostat will energize the fan on a demand for heat or cool. Install the thermostat on an inside wall, away from drafts, lights or other heat sources in a location that has sufficient air circulation from other rooms being controlled by the thermostat. # 12. Sequence of Operation Cooling (Cooling only) When the thermostat calls for cooling, the circuit from R to G is completed. The blower motor is energized directly by the ECM fan control, which receives the 24VAC signal from the thermostat. The circuit from R to Y is also complete energizing the compressor contactor of the outdoor unit. The contactor will close and start the compressor and condenser fan motor. #### Cooling (heat pump) When the thermostat calls for cooling, the circuit from R to G is completed. The blower motor is energized directly by the ECM fan control, which receives the 24VAC signal from the thermostat. The circuit from R to Y is also complete energizing the compressor contactor of the outdoor unit. The contactor will close and start the compressor and condenser fan motor. Circuit R to O energizes the reversing valve to the cooling position. #### Heating (heat pump) When the thermostat calls for heating, the circuit from R to G is completed and the blower motor is energized directly by the ECM fan control, which receives the 24VAC signal from the thermostat. The circuit from R to Y is also complete energizing the compressor contactor of the outdoor unit. The contactor will close and start the compressor and condenser fan motor. In the heating mode, the reversing valve of the outdoor unit is not energized. If the indoor temperature continues to fall, the R to W circuit is completed energizing the electric heat contactor(s). #### Heating (electric heat only) **Note:** The thermostat must be setup to bring the blower on when the electric heat is energized. When the thermostat calls for heating, the circuit from R to G is completed and the blower motor is energized directly by the ECM fan control, which receives the 24VAC signal from the thermostat. The circuit from R to W is completed energizing the heating contactor(s). #### **Defrost** Supplemental heat during defrost can be provided by connecting the X2 (black) wire from the outdoor unit to W1 or W2 at the indoor unit. This will prevent cold air from being discharged from the indoor unit during defrost. #### 13. Operational and Checkout Procedures To obtain proper performance, all units must be operated and charge adjustments made in accordance with procedures found in the Service Facts document of the outdoor unit. After installation has been completed, it is recommended that the entire system be checked against the checkout list located at the back of this document. See "Checkout Procedures," p. 30 #### 14. Maintenance The system air filter(s) should be inspected, cleaned or replaced at least monthly. Make certain that the access panels are replaced and secured properly before placing the unit back in operation. This product is designed for dependable service; however, periodic maintenance should be scheduled and conducted by trained professional service personnel. This service should be conducted at least annually, and should include testing and inspection of electrical and refrigerant components. The heat transfer surface should be cleaned. The blower motor is permanently lubricated for normal operating conditions. # **Field Wiring** ### Single Stage, Cooling Only - 1. * Units with pigtails require wirenuts for connections. - 2. Cap all unused wires. - 3. For BK enabled comfort control, do not connect Y1 or Y2 at the air handler $\,$ - 4. For BK enabled comfort control, cut the jumper wire between R and BK on the control board. See wiring schematic for details. - 5. In AC systems for multiple stages of electric heat, jumper W1 and W2 together if comfort control has only one stage of heat. ### Single Stage, HP - 1. * Units with pigtails require wirenuts for connections. - 2. Cap all unused wires. - 3. For BK enabled comfort control, do not connect Y1 or Y2 at the air handler $\,$ - 4. For BK enabled comfort control, cut the jumper wire between R and BK on the control board. See wiring schematic for details. - 5. In systems for multiple stages of electric heat, jumper W1 and W2 together if comfort control has only one stage of heat. # 2 Stage, 2 Step, Cooling Only - 1. * Units with pigtails require wirenuts for connections. - 2. Cap all unused wires. - 3. For BK enabled comfort control, do not connect Y1 or Y2 at the air handler $\,$ - 4. For BK enabled comfort control, cut the jumper wire between R and BK on the control board. See wiring schematic for details. - 5. In AC systems for multiple stages of electric heat, jumper W1 and W2 together if comfort control has only one
stage of heat. # 2 Stage, 2 Step, HP - 1. * Units with pigtails require wirenuts for connections. - 2. Cap all unused wires. - 3. For BK enabled comfort control, do not connect Y1 or Y2 at the air handler - 4. For BK enabled comfort control, cut the jumper wire between R and BK on the control board. See wiring schematic for details. - 5. In systems for multiple stages of electric heat, jumper W1 and W2 together if comfort control has only one stage of heat. # **Electrical Data** # **Performance and Electrical Data** Table 4. Air Flow Performance | | TEM6A0B | 24, TEM6A | 0B30 CO | DLING AI | RFLOW P | ERFORM | ANCE, WET | COIL, N |) FILTER | , NO HEA | ATER | | |---------------------|---------|-----------------|---------|-----------|-----------|--------|--------------|-------------|-------------|-------------|-------------|------------| | OUTDOOR | SPEED | AIRFLOW | | DIP SWITC | H SETTING | ì | AIRFLOW | | EXTERNA | L STATIC P | RESSURE | | | UNIT SIZE
(TONS) | SETTING | SETTING | SW1 | SW2 | SW3 | SW4 | POWER | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | | | LOW | 353 CFM/
ton | ON | ON | OFF | ON | CFM
Watts | 533
52 | 497
78 | 461
104 | 425
130 | 390
157 | | 1.5 | NORMAL | 401 CFM/
ton | ON | ON | OFF | OFF | CFM
Watts | 611
65 | 580
95 | 548
125 | 517
155 | 486
185 | | | HIGH | 451 CFM/
ton | ON | ON | ON | OFF | CFM
Watts | 684
81 | 668
115 | 644
148 | 611
182 | 570
215 | | | LOW | 343 CFM/
ton | OFF | ON | OFF | ON | CFM
Watts | 687
82 | 672
115 | 648
149 | 614
182 | 571
215 | | 2 | NORMAL | 390 CFM/
ton | OFF | ON | OFF | OFF | CFM
Watts | 789
104 | 798
145 | 780
183 | 735
216 | 663
246 | | | HIGH | 439 CFM/
ton | OFF | ON | ON | OFF | CFM
Watts | 884
135 | 887
177 | 882
230 | 845
274 | 751
290 | | | LOW | 300 CFM/
ton | ON | OFF | OFF | ON | CFM
Watts | 752
92 | 749
123 | 729
167 | 691
211 | 636
241 | | 2.5 | NORMAL | 340 CFM/
ton | ON | OFF | OFF | OFF | CFM
Watts | 859
128 | 861
172 | 863
211 | 830
242 | 727
268 | | | HIGH | 383 CFM/
ton | ON | OFF | ON | OFF | CFM
Watts | 963
172 | 973
223 | 995
263 | 967
291 | 844
308 | | | LOW | 323 CFM/
ton | OFF | OFF | OFF | ON | CFM
Watts | 959
169 | 962
217 | 974
263 | 940
297 | 816
311 | | 3 | NORMAL | 367 CFM/
ton | OFF | OFF | OFF | OFF | CFM
Watts | 1097
240 | 1100
296 | 1100
343 | 1034
363 | 858
341 | | | HIGH | 413 CFM/
ton | OFF | OFF | ON | OFF | CFM
Watts | 1192
304 | 1150
331 | 1115
354 | 1031
361 | 856
339 | Table 5. Air Flow Performance | | TEM | 6A0B24, TI | М6АОВЗ | O HEATI | NG AIRFL | OW PER | FORMANCE | NO FIL | ΓER, NO I | HEATER | | | |---------------------|---------|-----------------|--------|-----------|----------|--------|--------------|-------------|-------------|-------------|-------------|------------| | OUTDOOR | SPEED | AIRFLOW | | DIP SWITC | | | AIRFLOW | | | L STATIC F | RESSURE | | | UNIT SIZE
(TONS) | SETTING | SETTING | SW1 | SW2 | SW3 | SW4 | POWER | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | | | LOW | 394 CFM/
ton | ON | ON | OFF | ON | CFM
Watts | 599
58 | 571
88 | 539
117 | 502
146 | 462
175 | | 1.5 | NORMAL | 448 CFM/
ton | ON | ON | OFF | OFF | CFM
Watts | 680
72 | 665
109 | 641
145 | 610
178 | 572
209 | | | HIGH | 493 CFM/
ton | ON | ON | ON | OFF | CFM
Watts | 748
89 | 746
118 | 682
163 | 545
208 | 326
240 | | | LOW | 393 CFM/
ton | OFF | ON | OFF | ON | CFM
Watts | 785
97 | 790
128 | 773
175 | 735
223 | 674
253 | | 2 | NORMAL | 446 CFM/
ton | OFF | ON | OFF | OFF | CFM
Watts | 904
131 | 902
179 | 912
219 | 894
253 | 809
281 | | | HIGH | 491 CFM/
ton | OFF | ON | ON | OFF | CFM
Watts | 980
167 | 972
216 | 990
268 | 974
308 | 863
324 | | | LOW | 350 CFM/
ton | ON | OFF | OFF | ON | CFM
Watts | 866
125 | 870
162 | 866
215 | 833
263 | 750
286 | | 2.5 | NORMAL | 398 CFM/
ton | ON | OFF | OFF | OFF | CFM
Watts | 995
171 | 988
222 | 1005
271 | 986
309 | 872
325 | | | HIGH | 437 CFM/
ton | ON | OFF | ON | OFF | CFM
Watts | 1099
220 | 1086
274 | 1098
328 | 1065
362 | 918
353 | | | LOW | 338 CFM/
ton | OFF | OFF | OFF | ON | CFM
Watts | 1010
174 | 1001
224 | 1018
275 | 1000
315 | 888
331 | | 3 | NORMAL | 384 CFM/
ton | OFF | OFF | OFF | OFF | CFM
Watts | 1154
246 | 1151
312 | 1135
350 | 1066
361 | 905
345 | | | HIGH | 422 CFM/
ton | OFF | OFF | ON | OFF | CFM
Watts | 1245
305 | 1167
322 | 1127
346 | 1067
361 | 927
352 | Table 6. Air Flow Performance | | TEM6A0C | 36, TEM6A | 0C42 CO | DLING AI | RFLOW P | ERFORM | ANCE, WET | COIL, N | O FILTER | , NO HEA | TER | | |---------------------|---------|-----------------|---------|-----------|-----------|--------|--------------|-------------|-------------|-------------|-------------|-------------| | OUTDOOR | SPEED | AIRFLOW | | DIP SWITC | H SETTING | ì | AIRFLOW | | EXTERNA | L STATIC P | RESSURE | | | UNIT SIZE
(TONS) | SETTING | SETTING | SW1 | SW2 | SW3 | SW4 | POWER | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | | | LOW | 300 CFM/
ton | ON | ON | OFF | ON | CFM
Watts | 761
63 | 755
98 | 719
131 | 654
163 | 560
193 | | 2.5 | NORMAL | 341 CFM/
ton | ON | ON | OFF | OFF | CFM
Watts | 862
82 | 861
120 | 834
158 | 781
196 | 700
235 | | | HIGH | 384 CFM/
ton | ON | ON | ON | OFF | CFM
Watts | 962
106 | 963
147 | 948
190 | 915
234 | 863
279 | | | LOW | 319 CFM/
ton | OFF | ON | OFF | ON | CFM
Watts | 961
106 | 962
147 | 947
189 | 914
233 | 862
279 | | 3 | NORMAL | 363 CFM/
ton | OFF | ON | OFF | OFF | CFM
Watts | 1092
146 | 1093
192 | 1082
240 | 1060
288 | 1026
337 | | | HIGH | 408 CFM/
ton | OFF | ON | ON | OFF | CFM
Watts | 1231
196 | 1231
249 | 1221
301 | 1203
353 | 1175
404 | | | LOW | 315 CFM/
ton | ON | OFF | OFF | ON | CFM
Watts | 1104
150 | 1105
197 | 1094
245 | 1072
293 | 1039
343 | | 3.5 | NORMAL | 357 CFM/
ton | ON | OFF | OFF | OFF | CFM
Watts | 1258
209 | 1258
263 | 1248
317 | 1229
369 | 1201
421 | | | HIGH | 402 CFM/
ton | ON | OFF | ON | OFF | CFM
Watts | 1418
286 | 1415
347 | 1401
406 | 1379
462 | 1348
516 | | | LOW | 308 CFM/
ton | OFF | OFF | OFF | ON | CFM
Watts | 1238
199 | 1238
253 | 1229
306 | 1210
357 | 1182
408 | | 4 | NORMAL | 350 CFM/
ton | OFF | OFF | OFF | OFF | CFM
Watts | 1412
282 | 1410
344 | 1398
404 | 1378
462 | 1349
517 | | | HIGH | 394 CFM/
ton | OFF | OFF | ON | OFF | CFM
Watts | 1570
393 | 1528
436 | 1473
466 | 1406
483 | 1326
488 | Table 7. Air Flow Performance | | TEM | 6A0C36, T | EM6A0C4 | 2 HEATI | NG AIRFL | OW PERI | FORMANCE | , NO FIL | ΓER, NO I | HEATER | | | |---------------------|---------|-----------------|---------|-----------|----------|---------|--------------|-------------|-------------|-------------|-------------|-------------| | OUTDOOR | SPEED | AIRFLOW | | DIP SWITC | | | AIRFLOW | | | L STATIC P | RESSURE | | | UNIT SIZE
(TONS) | SETTING | SETTING | SW1 | SW2 | SW3 | SW4 | POWER | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | | | LOW | 341 CFM/
ton | ON | ON | OFF | ON | CFM
Watts | 860
77 | 863
115 | 838
154 | 788
193 | 707
232 | | 2.5 | NORMAL | 379 CFM/
ton | ON | ON | OFF | OFF | CFM
Watts | 949
98 | 953
138 | 937
180 | 906
224 | 852
269 | | | HIGH | 417 CFM/
ton | ON | ON | ON | OFF | CFM
Watts | 1042
122 | 1046
166 | 1036
212 | 1015
259 | 980
308 | | | LOW | 381 CFM/
ton | OFF | ON | OFF | ON | CFM
Watts | 1147
154 | 1149
203 | 1141
253 | 1123
303 | 1094
353 | | 3 | NORMAL | 424 CFM/
ton | OFF | ON | OFF | OFF | CFM
Watts | 1277
204 | 1279
259 | 1272
314 | 1255
368 | 1228
421 | | | HIGH | 466 CFM/
ton | OFF | ON | ON | OFF | CFM
Watts | 1409
260 | 1409
323 | 1401
383 | 1384
442 | 1357
500 | | | LOW | 348 CFM/
ton | ON | OFF | OFF | ON | CFM
Watts | 1222
180 | 1224
232 | 1216
285 | 1200
336 | 1174
388 | | 3.5 | NORMAL | 386 CFM/
ton | ON | OFF | OFF | OFF | CFM
Watts | 1361
240 | 1362
300 | 1354
358 | 1337
415 | 1310
471 | | | HIGH | 425 CFM/
ton | ON | OFF | ON | OFF | CFM
Watts | 1497
316 | 1478
372 | 1449
420 | 1408
461 | 1356
494 | | | LOW | 338 CFM/
ton | OFF | OFF | OFF | ON | CFM
Watts | 1360
239 | 1361
299 | 1353
358 | 1336
415 | 1309
470 | | 4 | NORMAL | 375 CFM/
ton | OFF | OFF | OFF | OFF | CFM
Watts | 1511
325 | 1489
380 | 1456
426 | 1412
464 | 1355
493 | | | HIGH | 413 CFM/
ton | OFF | OFF | ON | OFF | CFM
Watts | 1659
420 | 1605
463 | 1535
488 | 1450
494 | 1349
483 | Table 8. Air Flow Performance | | TEM6A0D | 48, TEM6A | 0D60 CO | DLING AI | RFLOW F | PERFORM | ANCE, WET | COIL, N | O FILTER | R, NO HE | ATER | | |---------------------|---------|-----------------|---------|-----------|-----------|---------|--------------|-------------|-------------|-------------|-------------|-------------| | OUTDOOR | SPEED | AIRFLOW | | DIP SWITC | H SETTING | j . | AIRFLOW | | EXTERNA | L STATIC P | RESSURE | | | UNIT SIZE
(TONS) | SETTING | SETTING | SW1 | SW2 | SW3 | SW4 | POWER | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | | | LOW | 323 CFM/
ton | ON | ON | OFF | ON | CFM
Watts | 979
87 | 978
126 | 959
170 | 922
217 | 867
269 | | 3 | NORMAL | 367 CFM/
ton | ON | ON | OFF | OFF | CFM
Watts | 1111
124 | 1113
168 | 1101
215 | 1075
265 | 1036
317 | | | HIGH | 415 CFM/
ton | ON | ON | ON | OFF | CFM
Watts | 1252
165 | 1259
214 |
1254
264 | 1239
314 | 1212
364 | | | LOW | 315 CFM/
ton | OFF | ON | OFF | ON | CFM
Watts | 1111
124 | 1113
168 | 1101
215 | 1075
265 | 1036
317 | | 3.5 | NORMAL | 358 CFM/
ton | OFF | ON | OFF | OFF | CFM
Watts | 1259
167 | 1266
217 | 1261
267 | 1246
317 | 1220
368 | | | HIGH | 404 CFM/
ton | OFF | ON | ON | OFF | CFM
Watts | 1419
223 | 1428
279 | 1425
334 | 1411
389 | 1386
444 | | | LOW | 309 CFM/
ton | ON | OFF | OFF | ON | CFM
Watts | 1241
161 | 1248
210 | 1243
259 | 1227
309 | 1201
359 | | 4 | NORMAL | 351 CFM/
ton | ON | OFF | OFF | OFF | CFM
Watts | 1407
218 | 1416
273 | 1413
328 | 1399
383 | 1373
437 | | | HIGH | 396 CFM/
ton | ON | OFF | ON | OFF | CFM
Watts | 1583
296 | 1593
359 | 1594
422 | 1586
485 | 1570
547 | | | LOW | 295 CFM/
ton | OFF | OFF | OFF | ON | CFM
Watts | 1478
249 | 1487
307 | 1486
365 | 1474
423 | 1452
481 | | 5 | NORMAL | 335 CFM/
ton | OFF | OFF | OFF | OFF | CFM
Watts | 1671
344 | 1681
412 | 1684
479 | 1678
545 | 1635
565 | | | HIGH | 379 CFM/
ton | OFF | OFF | ON | OFF | CFM
Watts | 1880
476 | 1892
556 | 1900
635 | 1902
714 | 1760
650 | Table 9. Air Flow Performance | | TEM | 6A0D48, T | EM6A0D6 | 50 HEATI | NG AIRF | LOW PER | FORMANCE | , NO FIL | TER, NO | HEATER | | | |---------------------|---------|-----------------|---------|-----------|---------|---------|--------------|-------------|-------------|-------------|-------------|-------------| | OUTDOOR | SPEED | AIRFLOW | | DIP SWITC | | | AIRFLOW | <u> </u> | | L STATIC P | RESSURE | | | UNIT SIZE
(TONS) | SETTING | SETTING | SW1 | SW2 | SW3 | SW4 | POWER | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | | | LOW | 360 CFM/
ton | ON | ON | OFF | ON | CFM
Watts | 1087
111 | 1091
153 | 1081
199 | 1055
249 | 1015
301 | | 3 | NORMAL | 400 CFM/
ton | ON | ON | OFF | OFF | CFM
Watts | 1205
139 | 1213
186 | 1211
234 | 1198
283 | 1173
333 | | | HIGH | 440 CFM/
ton | ON | ON | ON | OFF | CFM
Watts | 1322
175 | 1333
227 | 1332
279 | 1321
332 | 1297
384 | | | LOW | 347 CFM/
ton | OFF | ON | OFF | ON | CFM
Watts | 1219
143 | 1228
191 | 1226
240 | 1213
289 | 1189
339 | | 3.5 | NORMAL | 386 CFM/
ton | OFF | ON | OFF | OFF | CFM
Watts | 1351
184 | 1363
237 | 1363
290 | 1351
344 | 1328
397 | | | HIGH | 424 CFM/
ton | OFF | ON | ON | OFF | CFM
Watts | 1482
232 | 1495
291 | 1497
349 | 1489
408 | 1471
466 | | | LOW | 351 CFM/
ton | ON | OFF | OFF | ON | CFM
Watts | 1405
201 | 1417
256 | 1418
311 | 1408
367 | 1385
422 | | 4 | NORMAL | 390 CFM/
ton | ON | OFF | OFF | OFF | CFM
Watts | 1555
262 | 1568
323 | 1572
385 | 1567
447 | 1553
509 | | | HIGH | 429 CFM/
ton | ON | OFF | ON | OFF | CFM
Watts | 1703
334 | 1717
403 | 1723
472 | 1722
540 | 1665
560 | | | LOW | 327 CFM/
ton | OFF | OFF | OFF | ON | CFM
Watts | 1625
294 | 1639
359 | 1644
424 | 1641
489 | 1630
554 | | 5 | NORMAL | 363 CFM/
ton | OFF | OFF | OFF | OFF | CFM
Watts | 1797
384 | 1812
459 | 1820
533 | 1822
606 | 1750
615 | | | HIGH | 400 CFM/
ton | OFF | OFF | ON | OFF | CFM
Watts | 1970
495 | 1986
581 | 1999
667 | 2010
740 | 1910
680 | Table 10. Electrical Data | | | | | TEM6A0B2 | 4, TEM6A0B | 30 HEATER | DATA | | | | | |----------------------------------|-----------|-------|-------|---------------------|---------------------|------------------------|-------|-------|---------------------|---------------------|------------------------| | | No. of | | | 240 \ | /olt | | | | 208 | Volt | | | Heater Model No. | Circuits/ | Capa | acity | Heater | Minimum | Maximum | Сар | acity | Heater | Minimum | Maximum | | | Phases | kW | BTUH | Amps per
Circuit | Circuit
Ampacity | Overload
Protection | kW | BTUH | Amps per
Circuit | Circuit
Ampacity | Overload
Protection | | No Heater | | | | 2.8 * | 4 | 15 | | | 2.8 * | 4 | 15 | | BAYHTR1504BRKC
BAYHTR1504LUGB | 1/1 | 3.84 | 13100 | 16.0 | 24 | 25 | 2.88 | 9800 | 13.8 | 21 | 25 | | BAYHTR1505BRKC
BAYHTR1505LUGB | 1/1 | 4.80 | 16400 | 20.0 | 29 | 30 | 3.60 | 12300 | 17.3 | 25 | 25 | | BAYHTR1508BRKC
BAYHTR1508LUGB | 1/1 | 7.68 | 26200 | 32.0 | 44 | 45 | 5.76 | 19700 | 27.7 | 38 | 40 | | BAYHTR1510BRKC
BAYHTR1510LUGB | 1/1 | 9.60 | 32800 | 40.0 | 54 | 60 | 7.20 | 24600 | 34.6 | 47 | 50 | | BAYHTR1516BRKA
Circuit 1 (a) | 2/1 | 9.60 | 32800 | 40.0 | 54 | 60 | 7.20 | 24600 | 34.6 | 47 | 50 | | BAYHTR1516BRKA
Circuit 2 | 2/1 | 4.80 | 16400 | 20.0 | 25 | 25 | 3.60 | 12300 | 17.3 | 22 | 25 | | BAYHTR3510LUG | 1/3 | 9.60 | 32800 | 23.1 | 32 | 35 | 7.20 | 24600 | 20.0 | 28 | 30 | | BAYHTR3515LUG | 1/3 | 14.40 | 49100 | 34.6 | 46 | 50 | 10.80 | 36900 | 30.0 | 41 | 45 | | * = Motor Amps | • | • | • | | | • | • | • | | | | ⁽a) MCA and MOP for circuit 1 contains the motor amps Table 11. Electrical Data | | TEM6A0C36, TEM6A0C42 HEATER DATA 240 Volt 208 Volt | | | | | | | | | | | | | | |----------------------------------|--|-------|-------|---------------------|---------------------|------------------------|-------|-------|---------------------|---------------------|------------------------|--|--|--| | | No. of | | | 240 \ | /olt | | | | 208 | Volt | | | | | | Heater Model No. | Circuits/ | Cap | acity | Heater | Minimum | Maximum | Сар | acity | Heater | Minimum | Maximum | | | | | | Phases | kW | BTUH | Amps per
Circuit | Circuit
Ampacity | Overload
Protection | kW | BTUH | Amps per
Circuit | Circuit
Ampacity | Overload
Protection | | | | | No Heater | | | | 4.3 * | 5 | 15 | | | 4.3 * | 5 | 15 | | | | | BAYHTR1504BRKC
BAYHTR1504LUGB | 1/1 | 3.84 | 13100 | 16.0 | 25 | 25 | 2.88 | 9800 | 13.8 | 23 | 25 | | | | | BAYHTR1505BRKC
BAYHTR1505LUGB | 1/1 | 4.80 | 16400 | 20.0 | 30 | 30 | 3.60 | 12300 | 17.3 | 27 | 30 | | | | | BAYHTR1508BRKC
BAYHTR1508LUGB | 1/1 | 7.68 | 26200 | 32.0 | 45 | 45 | 5.76 | 19700 | 27.7 | 40 | 40 | | | | | BAYHTR1510BRKC
BAYHTR1510LUGB | 1/1 | 9.60 | 32800 | 40.0 | 55 | 60 | 7.20 | 24600 | 34.6 | 49 | 50 | | | | | BAYHTR1516BRKA
Circuit 1 (a) | 2/1 | 9.60 | 32800 | 40.0 | 55 | 60 | 7.20 | 24600 | 34.6 | 49 | 50 | | | | | BAYHTR1516BRKA
Circuit 2 | 2/1 | 4.80 | 16400 | 20.0 | 25 | 25 | 3.60 | 12300 | 17.3 | 22 | 25 | | | | | BAYHTR1522BRKA
Circuit 1 (a) | 2/1 | 9.60 | 32800 | 40.0 | 55 | 60 | 7.20 | 24600 | 34.6 | 49 | 50 | | | | | BAYHTR1522BRKA
Circuit 2 | 2/1 | 9.60 | 32800 | 40.0 | 50 | 50 | 7.20 | 24600 | 34.6 | 43 | 45 | | | | | BAYHTR3510LUG | 1/3 | 9.60 | 32800 | 23.1 | 34 | 35 | 7.20 | 24600 | 20.0 | 30 | 30 | | | | | BAYHTR3515LUG | 1/3 | 14.40 | 49100 | 34.6 | 48 | 50 | 10.80 | 36900 | 30.0 | 42 | 45 | | | | | * = Motor Amps | | | | | | | | | | | | | | | ⁽a) MCA and MOP for circuit 1 contains the motor amps Table 12. Electrical Data | | | | TI | EM6A0D48 | , TEM6A0D | 60 HEATER | DATA | | | | | |------------------|---------------------|------|-------|---------------------|---------------------|------------------------|------|-------|---------------------|---------------------|------------------------| | | No of | | | 240 \ | /olt | | | | 208 | Volt | | | Heater Model No. | No. of
Circuits/ | Сара | acity | Heater | Minimum | Maximum | Сар | acity | Heater | Minimum | Maximum | | | Phases | kW | BTUH | Amps per
Circuit | Circuit
Ampacity | Overload
Protection | kW | BTUH | Amps per
Circuit | Circuit
Ampacity | Overload
Protection | | No Heater | | | | 6.8 * | 9 | 15 | | | 6.8 * | 9 | 15 | Table 12. Electrical Data (continued) | TEM6A0D48, TEM6A0D60 HEATER DATA | | | | | | | | | | | | | | | |--|-----|-------|-------|------|----|----|-------|-------|------|----|----|--|--|--| | BAYHTR1504BRKC
BAYHTR1504LUGB | 1/1 | 3.84 | 13100 | 16.0 | 29 | 30 | 2.88 | 9800 | 13.8 | 26 | 30 | | | | | BAYHTR1505BRKC
BAYHTR1505LUGB | 1/1 | 4.80 | 16400 | 20.0 | 34 | 35 | 3.60 | 12300 | 17.3 | 30 | 30 | | | | | BAYHTR1508BRKC
BAYHTR1508LUGB | 1/1 | 7.68 | 26200 | 32.0 | 49 | 50 | 5.76 | 19700 | 27.7 | 43 | 45 | | | | | BAYHTR1510BRKC
BAYHTR1510LUGB | 1/1 | 9.60 | 32800 | 40.0 | 59 | 60 | 7.20 | 24600 | 34.6 | 52 | 60 | | | | | BAYHTR1516BRKA
Circuit 1 (a) | 2/1 | 9.60 | 32800 | 40.0 | 59 | 60 | 7.20 | 24600 | 34.6 | 52 | 60 | | | | | BAYHTR1516BRKA
Circuit 2 | 2/1 | 4.80 | 16400 | 20.0 | 25 | 25 | 3.60 | 12300 | 17.3 | 22 | 25 | | | | | BAYHTR1522BRKA
Circuit 1 (a) | 2/1 | 9.60 | 32800 | 40.0 | 59 | 60 | 7.20 | 24600 | 34.6 | 52 | 60 | | | | | BAYHTR1522BRKA
Circuit 2 | 2/1 | 9.60 | 32800 | 40.0 | 50 | 50 | 7.20 | 24600 | 34.6 | 43 | 45 | | | | | BAYHTR1525BRKA
Circuit 1 ^(a) | | 6.00 | 20500 | 25.0 | 40 | 40 | 4.50 | 15400 | 21.6 | 36 | 40 | | | | | BAYHTR1525BRKA
Circuit 2 | 4/1 | 6.00 | 20500 | 25.0 | 31 | 35 | 4.50 | 15400 | 21.6 | 27 | 30 | | | | | BAYHTR1525BRKA
Circuit 3 | 4/1 | 6.00 | 20500 | 25.0 | 31 | 35 | 4.50 | 15400 | 21.6 | 27 | 30 | | | | | BAYHTR1525BRKA
Circuit 4 | | 6.00 | 20500 | 25.0 | 31 | 35 | 4.50 | 15400 | 21.6 | 27 | 30 | | | | | BAYHTR3510LUG | 1/3 | 9.60 | 32800 | 23.1 | 36 | 40 | 7.20 | 24600 | 20.0 | 33 | 35 | | | | | BAYHTR3515LUG | 1/3 | 14.40 | 49100 | 34.6 | 51 | 60 | 10.80 | 36900 | 30.0 | 45 | 45 | | | | | * = Motor Amps | | | | | | | | | | | · | | | | ⁽a) MCA and MOP for circuit 1 contains the motor amps # **Minimum Airflow CFM** | TEM6A0B24H21S, TEM6A0B30H21S | | | | | | |--|----------------|-------------------|--|--|--| | Heater Minimum Heater Airflow CFM | | | | | | | | With Heat Pump | Without Heat Pump | | | | | BAYHTR1504BRKC, BAYHTR1504LUGB
BAYHTR1505BRKC, BAYHTR1505LUGB |
550 | 600 | | | | | BAYHTR1508BRKC, BAYHTR1508LUGB | 800 | 600 | | | | | BAYHTR1510BRKC, BAYHTR1510LUGB | 825 | 700 | | | | | BAYHTR1516BRKA | 1050 | 850 | | | | | BAYHTR3510LUGC | 800 | 600 | | | | | BAYHTR3515LUGC | 900 | 850 | | | | | TEM6A0C36H31S, TEM6A0C42H41S | | | | | | |--|----------------|-------------------|--|--|--| | Heater | Minimum He | ater Airflow CFM | | | | | | With Heat Pump | Without Heat Pump | | | | | BAYHTR1504BRKC, BAYHTR1504LUGB
BAYHTR1505BRKC, BAYHTR1505LUGB | 875 | 675 | | | | | BAYHTR1508BRKC, BAYHTR1508LUGB | 875 | 675 | | | | | BAYHTR1510BRKC, BAYHTR1510LUGB | 1225 | 825 | | | | | BAYHTR1516BRKA | 1325 | 1150 | | | | | BAYHTR3510LUGC | 875 | 675 | | | | | BAYHTR3515LUGC | 1250 | 1150 | | | | | BAYHTR1522BRKA | 1325 | 1150 | | | | | TEM6A0D48H41S, TEM6A0D60H51S | | | | | | |--|----------------------------|-------------------|--|--|--| | Heater | Minimum Heater Airflow CFM | | | | | | | With Heat Pump | Without Heat Pump | | | | | BAYHTR1504BRKC, BAYHTR1504LUGB
BAYHTR1505BRKC, BAYHTR1505LUGB | 1150 | 975 | | | | | BAYHTR1508BRKC, BAYHTR1508LUGB | 1150 | 975 | | | | | BAYHTR1510BRKC, BAYHTR1510LUGB | 1150 | 975 | | | | | BAYHTR1516BRKA | 1325 | 1125 | | | | | BAYHTR3510LUGC | 1150 | 975 | | | | | BAYHTR3515LUGC | 1375 | 1150 | | | | | BAYHTR1522BRKA | 1375 | 1125 | | | | | BAYHTR1525BRKA | 1375 | 1125 | | | | | TEM6A0B24H21, TEM6A0B30H21 Airflow Performance with Auxiliary Heat | | | | | | | |--|----------|---------------|------------------|--|--|--| | Airflow Settings | Dip Swi | itch Settings | Nominal Airflow | | | | | | Switch 7 | Switch 8 | - Nominal Airnow | See following tables for heater application: | | | | Low | ON | ON | 601 | - Pressure Drop for Electrical Heters | | | | Med-Lo | OFF | ON | 723 | - Minimum Heating | | | | Med-Hi | ON | OFF | 851 | Airflow Matrix (on unit nameplates) | | | | High | OFF | OFF | 973 | | | | | TEM6A0C36H31, TEM6A0C42H41 Airflow Performance with Auxiliary Heat | | | | | | | |--|----------|--------------|-----------------|--|--|--| | Airflow Settings | Dip Swi | tch Settings | Nominal Airflow | | | | | Airnow Settings | Switch 7 | Switch 8 | Norminal Airnow | See following tables for heater application: | | | | Low | ON | ON | 696 | - Pressure Drop for
Electrical Heters | | | | Med-Lo | OFF | ON | 825 | - Minimum Heating | | | | Med-Hi | ON | OFF | 1150 | Airflow Matrix (on unit nameplates) | | | | High | OFF | OFF | 1298 | | | | | TEM6A0D48H41, TEM6A0D60H51 Airflow Performance with Auxiliary Heat | | | | | | | |--|----------|--------------|------------------|--|--|--| | Airflow Settings | Dip Swi | tch Settings | Nominal Airflow | | | | | Airnow Settings | Switch 7 | Switch 8 | Norminal All now | See following tables for heater application: | | | | Low | ON | ON | 997 | - Pressure Drop for
Electrical Heters | | | | Med-Lo | OFF | ON | 1129 | - Minimum Heating | | | | Med-Hi | ON | OFF | 1350 | Airflow Matrix (on unit nameplates) | | | | High | OFF | OFF | 1597 | | | | # **Outline Drawing** | PRODUCT DIMENSIONS | | | | | | | | | | |------------------------------|-------|-------|-------|-------|------|------|-------|-----------------|-------------------| | Air Handler Model | А | В | С | D | E | F | Н | Flow
Control | Gas Line
Braze | | TEM6A0B24, 30 | 46.77 | 18.50 | 16.50 | 16.75 | 4.68 | 7.33 | 20.09 | TXV | 3/4 | | TEM6A0C36, 42 | 51.27 | 23.50 | 21.50 | 21.75 | 7.01 | 9.66 | 24.59 | TXV | 7/8 | | TEM6A0D48, 60 | 53.87 | 26.50 | 24.50 | 24.75 | 7.01 | 9.66 | 27.19 | TXV | 7/8 | | All dimensions are in inches | | | | | | | | | | # **Heater Pressure Drop Table** | | | Number of Racks | | | | | | |----------------|------|---------------------------------|------|------|--|--|--| | Airflow
CFM | 1 | 2 | 3 | 4 | | | | | U. | | Air Pressure Drop — Inches W.G. | | | | | | | 1800 | 0.02 | 0.04 | 0.06 | 0.14 | | | | | 1700 | 0.02 | 0.04 | 0.06 | 0.14 | | | | | 1600 | 0.02 | 0.04 | 0.06 | 0.13 | | | | | 1500 | 0.02 | 0.04 | 0.06 | 0.12 | | | | | 1400 | 0.02 | 0.04 | 0.06 | 0.12 | | | | | 1300 | 0.02 | 0.04 | 0.05 | 0.11 | | | | | 1200 | 0.01 | 0.04 | 0.05 | 0.10 | | | | | 1100 | 0.01 | 0.03 | 0.05 | 0.09 | | | | | 1000 | 0.01 | 0.03 | 0.04 | 0.09 | | | | | 900 | 0.01 | 0.03 | 0.04 | 0.08 | | | | | 800 | 0.01 | 0.03 | | | | | | | 700 | 0.01 | 0.02 | | | | | | | 600 | 0.01 | 0.02 | | | | | | # **Subcooling Adjustment** | System Matched with: | Indoor Unit Model No. | Outdoor Model No. | Subcooling | | | | |---|--|----------------------------------|------------|--|--|--| | 16 SEER HP — 2 ton | ER HP — 2 ton TEM6A0C36H31 | | 13 Degrees | | | | | 15 SEER HP — 2 ton | TEM6A0B24H21
TEM6A0B30H21 | 4TWR5024G1000A
4A6H5024G1000A | 14 Degrees | | | | | 15 SEER HP — 3 ton | TEM6A0B30H21
TEM6A0C36H31
TEM6A0C42H41 | 4TWR5036G1000A
4A6H5036G1000A | 14 Degrees | | | | | All other matches must be charged per the nameplate charging instructions | | | | | | | # **Coil Conversion Instructions** #### Table 13. Downflow Follow the conversion steps when installing the air handler in Figure 4. downflow configuration. Remove the front panels from the air handler. The coil and line set panel do not need to be separated. Remove the two coil retaining brackets located at the front of the drain pan. Each is held in place by one screw. Discard brackets. 3. Remove the two screws holding the center horizontal brace and rotate out of place. Retain parts. Figure 5. 4. Slide the coil assembly out. Remove and discard the horizontal drain pan. #### Table 13. Downflow (continued) #### Table 13. Downflow (continued) # **Coil Conversion** #### Table 14. Horizontal Right Follow the conversion steps when installing the air handler in horizontal right configuration. - 1. Remove the front panels from the air handler. The coil and line set panel do not need to be separated. - Remove the two coil retaining brackets located at the front of the drain pan. Each is held in place by one screw. Save brackets and screws. - 3. Remove the two screws holding the center horizontal brace and rotate out of place. Retain parts. - 4. Make note of the horizontal drain pan orientation (up/down). - 5. Slide the coil assembly out. - Change location of the front and rear water diverter brackets by removing the screws on the water diverter brackets that are located on the left side of the coil. Attach the water diverters to the right hand side of the coil using the same screws. Important: The coil slabs are different and the mount hole locations will vary. See the illustrations on the following pages that correspond to the unit tonnage to see the correct mounting position of the water diverter bracket. **Important:** The water diverter brackets are not symmetrical and will vary by tonnage. Table 14. Horizontal Right (continued) Figure 25. 7. Relocate the horizontal drain pan from the left side of the coil to the right side. 8. Remove the drain pan support bracket. Do not discard. Remove the two drain plugs from the front of the drain pan and insert them in the drains at the rear of the drain pan. Figure 26. 9. Reinstall the drain pan support bracket. The bracket should be located between the two drain plugs as shown in ### Table 14. Horizontal Right (continued) - 10. Slide the coil assembly back into the air handler cabinet. - 11. Replace the center horizontal brace removed in a previous step. - 12. Replace the two coil retaining brackets removed in a previous step. - 14. Replace all panels. # **Checkout Procedures** The final phase of the installation is the system Checkout Procedures. The following list represents the most common items covered in a Checkout Procedure. Confirm all requirements in this document have been met. | All wiring connections are tight and properly secured. | Supply registers and return grilles are open, unobstructed, and air filter is installed. | |--|---| | Voltage and running current are within limits. | Indoor blower and outdoor fan are operating smoothly and | | All refrigerant lines (internal and external to equipment) are isolated, secure, and not in direct contact with each other or | without obstruction. | | structure. | Indoor blower motor set on correct speed setting to deliver required CFM. | | All braze connections have been checked for leaks. A vacuum of 350 microns provides confirmation that the refrigeration system is leak free and dry. | Cover panels are in place and properly tightened. | | Final unit inspection to confirm factory tubing has not shifted during shipment. Adjust tubing if necessary so tubes do not rub | For gas heating systems, manifold pressure has been checked and all gas line connections are tight and leak free. | | against each other or any component when unit runs. | For gas heating systems, flue gas is properly vented. | | Ductwork is sealed and insulated. | System functions safely and properly in all modes. | | All drain lines are clear with joints properly sealed. Pour water into drain pan to confirm proper drainage. | Owner has been instructed on use of system and given manual. | The manufacturer optimizes the performance of homes and buildings around the world. A business of Ingersoll Rand,
the leader in creating and sustaining safe, comfortable and energy efficient environments, the manufacturer offers a broad portfolio of advanced controls and HVAC systems, comprehensive building services, and parts. For more information, visit www.IRCO.com. The manufacturer has a policy of continuous product and product data improvements and reserves the right to change design and specifications without notice. ©2015 Trane 18-GF74D1-1D-EN 10 Aug 2015 Supersedes 18-GF74D1-1C-EN (March 2015)